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ABSTRACT

Recent empirical evidence indicates that transformer based in-context learning
performs better when using a prefix language model (prefixLM), in which in-
context samples can all attend to each other, compared to causal language models
(causalLM), which use auto-regressive attention that prohibits in-context samples
to attend to future samples. While this result is intuitive, it is not understood from
a theoretical perspective. In this paper we take a theoretical approach and analyze
the convergence behavior of prefixLM and causalLM under a certain parameter
construction. Our analysis shows that both LM types converge to their stationary
points at a linear rate, but that while prefixLM converges to the optimal solution
of linear regression, causalLM convergence dynamics follows that of an online
gradient descent algorithm, which is not guaranteed to be optimal even as the
number of samples grows infinitely. We supplement our theoretical claims with
empirical experiments over synthetic and real tasks and using various types of
transformers. Our experiments verify that causalLM consistently underperforms
prefixLM in all settings.

1 INTRODUCTION

Transformer-based models (Vaswani et al., 2017) have become the default foundational model for
various machine learning applications such as natural language processing (Devlin et al., 2018; Brown
et al., 2020; Chowdhery et al., 2022) and computer vision (Dosovitskiy et al., 2020). Beyond their
traditional usage in machine learning applications, it has recently been discovered that pretraining
large transformers on a vast amounts of data leads them to develop a striking ability referred to as
in-context learning (ICL) (Brown et al., 2020). Specifically, once such pretraining is complete, these
models are able to solve new tasks at inference time (without changing their parameters) by simply
ingesting a short sequence (prefix) of labeled examples from a task and then computing a prediction
for a query example.

The ICL capability was first demonstrated by GPT-3 (Brown et al., 2020), where a causalLM (a
Transformer decoder with auto-regressive attention masks) was used as the main model architecture.
However, follow up work empirically found that restricting the auto-regressive masks on the entire
sequence is too prohibitive and therefore proposed the so-called prefixLM (Raffel et al., 2020b; Tay
et al., 2022) which allows full attention within the prefix tokens. Moreover, the latest models (such
as PaLM2 (Google et al., 2023)) adopt a mixture of different LM objectives during pretraining to
achieved state-of-art performance across a diverse set of tasks and capabilities.

However, beyond the few empirical results in those and related papers, there is yet no theoretical ex-
planation that accounts for the different ICL behavior of prefixLM and causalLM. Indeed, theoretical
studies of ICL are difficult due to the complicated non-linearity of the (ordinary) transformer archi-
tecture. However, recent work (Von Oswald et al., 2023) focusing on ICL of linear regression was
able to show that a specifically designed parameter construction of a one-layer Linear Self-Attention
(LSA) transformer can simulate a single step of gradient descent by using the in-context examples as
training data. Moreover, a different recent study (Zhang et al., 2023) used gradient flow to prove that
a randomly initialized LSA-transformer indeed converges to such a construction during training.
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In this paper, we continue the theoretical line of work above by investigating the convergence
properties of ICL for both prefixLM and causalLM multi-layer LSA-transformers in a linear regression
setting. We summarizes our contributions as follows:

• We first present a clear, formal proof that establishes the relationship between a multi-layer
LSA and multi-step gradient descents in linear regression.

• We then show that both causalLM and prefixLM based multi-layer LSA-transformers
converge to their respective stationary points with linear rates of convergence. We prove
that the stationary point of prefixLM corresponds to the optimal least square solution of
the linear regression problem, while the stationary points of causalLM correspond to the
weights obtained along the iterations of online gradient descent with non-decaying step
sizes. Importantly, the stationary points obtained by causalLM may not become optimal
even as the number of in-context examples increases, which indicates that causalLM is not
optimal for in-context learning.

• Finally, we verify the above theoretical insights by conducting experiments with LSA-
transformers as well as ordinary softmax attention based transformers on various synthetic
tasks including linear and non-linear regression, and multiclass classifications. We also
compare causalLM and prefixLM ICL based on LLMs including T5 (Roberts et al., 2022)
and PaLM2 (Google et al., 2023), as well as the multimodal model PaLI-X (Chen et al.,
2023). Our experimental results support our theoretical findings and consistently show the
superiority of prefixLM over causalLM on ICL for such settings.

2 BACKGROUND

We begin by reviewing a few types of transformer attention and in-context learning (ICL), as well as
a specific transformer construction for linear regression ICL by (Von Oswald et al., 2023) which our
theories will be based on. The discussions of other related work are deferred to Appendix A.

2.1 TRANSFORMERS: SSA, LSA, CAUSALLM, AND PREFIXLM

Given a sequence of input vectors Z = (z1, . . . , zn), the output of standard Softmax Self-Attention
(SSA) layer is

zj ← zj +PVZ softmax(Z⊤ K⊤ Qzj),

where P,V,K,Q respectively corresponds to the output projection, value transformation, key
transformation and query transformation.

Since the softmax attention of standard transformers is non-linear, its theoretical analysis becomes
complicated even for a single layer. For this reason, theoretical approaches to analyze transformers
have often resorted to the Linear Self-Attention (LSA) layer (Von Oswald et al., 2023; Zhang et al.,
2023), which simply drops the softmax function from the attention,

zj ← zj +PVZ(Z⊤ K⊤ Qzj) = zj +PV

n∑
i=1

zi

(
z⊤i K⊤ Qzj

)
. (1)

Furthermore, since each input zj can attend to all positions j ∈ {1 . . . n}, this form of attention is
categorized as full (or bidirectional) attention, and is typically used in the transformer encoder.

On the other hand, a (linear) transformer decoder uses the auto-regressive attention

zj ← zj +PV

j∑
i=1

zi

(
z⊤i K⊤ Qzj

)
. (2)

which restricts each token zj to attend only to previous positions (and itself) from {1 . . . j}. This
restriction is due to the role of the decoder as a causal language model (causalLM) which predicts the
next token in the context of the previously generated ones.

The original transformer involves both a full attention based encoder and an auto-regressive atten-
tion based decoder. However, prominent NLP research has often chosen either encoder-only (e.g.
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BERT (Devlin et al., 2018)) or decoder-only (e.g. GPT (Brown et al., 2020), PaLM (Chowdhery
et al., 2022)) models according to the task at hand. This is partially for the purpose of halving the
parameter sizes.

Another version of attention, between full and auto-regressive, followed from the observation that
some tasks can benefit from a prefix sequence such as context or prompt. That is, the input sequence Z
is composed of n′ prefix tokens (z1, . . . , zn′) configured for the task, while the tokens (zn′+1, . . . , zn)
represent the sample. Specifically, prefixLM (Raffel et al., 2020b) suggests the following attention
(in its LSA version):

zj ← zj +PV

max(j,n′)∑
i=1

zi

(
z⊤i K⊤ Qzj

)
,

where max(j, n′) ensures each prefix token zj with j < n′ can attend to all prefix tokens.

2.2 IN-CONTEXT LEARNING

A formal framework of in-context learning has been described in various existing literature such as
(Garg et al., 2022; Zhang et al., 2023). Here, we briefly review the problem setting and introduce
notation that will be used across the paper.

In-context learning refers to the ability of models to produce context-driven predictions at inference
time. That is, at inference time, a model is fed with a sequence consisting of input-label pairs and
a query input (x1, y1, . . . ,xn, yn,xquery) and its goal is to predict the label yquery of xquery using
the context examples (x1, y1, . . . ,xn, yn) (specifically, without changing the model parameters).

2.3 LINEAR REGRESSION IN-CONTEXT LEARNERS

Linear regression is a classical machine learning problem. Given a set of input-label pairs (xi, yi),
the goal is to find an optimal weight vector w that minimizes the l2-loss:

L(w) =
1

2n

n∑
i=1

∥wxi−yi∥22.

The gradient of the loss is ∇wL = 1
n

∑n
i=1(wxi−yi)x⊤

i , and a gradient descent algorithm with
step size η follows the update rule:

w(l) =w(l−1) +
η

n

n∑
i=1

(yi −w(l−1) xi)x
⊤
i . (3)

Using linear regression as a lens to study in-context learning was first proposed in (Garg et al.,
2022), where the authors laid out an approach for training transformers to in-context learn a class of
simple predictors, including linear regression. However, no theoretical study was provided. More
recently, and most relevant to our work, (Von Oswald et al., 2023) proposed a succinct construction
that demonstrates how a single LSA layer can effectively implement a single gradient descent step.
According to their setup the input is formulated as

Z = (z
(0)
1 , . . . , z(0)n ), where z

(0)
j =

(
xj

yj

)
(4)

and the parameter matrices of (1) are set as:

K = Q =

(
Id×d 0
0 0

)
,V =

(
0d×d 0
w(0) −1

)
,P =

η

n
I, (5)

where w(0) is an initial weight vector. (Von Oswald et al., 2023) then showed that this configuration
results in an update of their so-called transformed target yj ← yj + η (∇w(0)L)xj , and that this
target update is equivalent to the one performed by a single-step gradient descent of linear regression.

Although the construction of (Von Oswald et al., 2023) connected LSA-based ICL to the gradient
descent of linear regression, the "transformed target" view seems unnatural* to work with. Moreover,
their extension from single-layer to multi-layer LSA is unfortunately unclear.

*The traditional ML formulation updates the weight vector or the model prediction, while the groundtruth
target remains fixed.
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3 MULTI-LAYER IN-CONTEXT LEARNER

In this section, we provide a formal proof that a multi-layer LSA under the construction of (Von Os-
wald et al., 2023) progresses identically to multi-step gradient descent.

Instead of the "transformed target" view, the following proposition explicitly connects the GD weights
of (3) to the outputs of the multi-layer LSA under the constructions of K, Q, P and V in (5). Note
that we keep w(0) = 0 in the proposition because it simplifies the equations and makes the outputs
more meaningful. However, such specification is not mandatory, and we provide general propositions,
for arbitrary w(0), in Appendix C.

Proposition 1 For a multi-layer LSA satisfying the construction (5) and with w(0) = 0, if its input Z
is formatted as (4), then its l-th layer output is z(l)j = (x⊤

j , δ
(l)
j )⊤, where δ

(l)
j = yj −w(l) xj and

w(l) is the l-th updated weight from the gradient descents update rule in (3).

Proof Sketch: Plugging in K, Q, P and V of (5) with w(0) = 0 and z
(l)
j = (x⊤

j , δ
(l)
j )⊤ into (1), we

obtain that for all l > 0, (
xj

δ
(l)
j

)
=

(
xj

δ
(l−1)
j

)
− η

n

n∑
i=1

(
0

δ
(l−1)
i

)
x⊤
i xj .

Since zj never changes its first d-dimension corresponding to xj , we can simplify it and focus only
on δ

(l)
j , which is the last output coordinate of the j-th LSA-layer,

δ
(l)
j = δ

(l−1)
j − η

n

n∑
i=1

δ
(l−1)
i x⊤

i xj , (6)

with δ
(0)
j = yj . Defining ỹ

(l)
j = yj − δ

(l)
j and rearranging (6), we obtain ỹ

(0)
j = 0 and ∀l > 0:

ỹ
(l)
j = ỹ

(l−1)
j +

η

n

n∑
i=1

(yi − ỹ
(l−1)
i )x⊤

i xj . (7)

Finally, using (7) and the fact that ỹ(0)j = 0 = w(0) xj , it can be proved by induction that ∀l : ỹ(l)j =

w(l) xj . A complete proof is provided in Appendix B.

To summarize, the newly introduced variable ỹ(l)j is exactly the prediction of the l-th gradient descent

weights w(l) for xj , and δ
(l)
j is the difference between the true label yj and the predicted ỹ

(l)
j .

Therefore, ỹ(l)j serves as a bridge to connect the LSA output δ(l)j and the GD weight w(l).

So far, we have dealt with the behavior of LSA layers with full attention. In what follows, we move
on to the practical setting of in-context learning, where the input contains not only n in-context
(training) examples in the format of (4), but also an additional (test) query z

(0)
query = (x⊤

query, 0)
⊤.

In particular, we will focus on the two common ICL variants: prefixLM and causalLM, each with a
different type of attention.

3.1 PREFIXLM ICL

A prefixLM ICL treats the in-context examples Z as the prefix and uses full attention on the first n
positions, so that they can each freely attend to each other. The last query vector zquery can also
attend to any example in Z, but cannot attend to itself†. As a result, the updates of the prefixLM-ICL
under the same construction follow (6), with the outputs of the l-th layer being,

δ
(l)
j = yj − ỹ

(l)
j = yj −w(l) xj ,

and δ(l)query = −ỹ(l)query = −w(l) xquery,

†This is because the query does not contain a meaningful label. Attending to itself would cause it to include
its last-dim input as a label, which would contaminate the resulting multi-layer prediction. This observation was
not considered in (Von Oswald et al., 2023).

4



Published as a conference paper at ICLR 2024

→ 0 → 

Figure 1: The inputs/outputs of a multi-layer in-context learner. We omitted xj and xquery since they
are unchanged.

where the initial ỹ(0)j = ỹ
(0)
query = 0.

Intuitively, the dynamics of the prefixLM ICL is as follows: all ỹ(l)j starts as 0 at l = 0, and gradually

approach to the true label yj as l increases, so that the difference (also as the output) δ(l)j gradually

approaches to 0. At the same time, δ(l)query starts at 0, and gradually approaches to −yquery, the
negation of the query label. Figure 1 provides an illustration of these dynamics.

3.2 CAUSALLM ICL

A causalLM applies auto-regressive attention throughout the entire sequence. Therefore, plugging
the same K, Q, P, V into (2), the update rules of (6) and (7) become:

δ
(l)
j = δ

(l−1)
j − η

n

j∑
i=1

δ
(l−1)
i x⊤

i xj , (8)

ỹ
(l)
j = ỹ

(l−1)
j +

η

n

j∑
i=1

(yi − ỹ
(l−1)
i )x⊤

i xj (9)

‡with δ
(l)
j = yj − ỹ

(l)
j . Moreover, since different δj , ỹj are exposed to different ranges of inputs, there

is no uniform w as in (3) that is associated with all ỹj . Instead, if we define wj for each different
position j with w

(0)
j = 0 and

w
(l)
j = w

(l−1)
j +

η

n

j∑
i=1

(yi −w
(l−1)
i xi)x

⊤
i (10)

then we have the following proposition:

Proposition 2 For a multi-layer causalLM-LSA satisfying (5) with w(0) = 0, if its input Z is
formatted as (4), then its l-th layer output is z(l)j = (x⊤

j , δ
(l)
j )⊤, where δ

(l)
j = yj −w

(l)
j xj and w

(l)
j

follow (10).

The proof of Proposition 2 is provided in Appendix B. Similar to prefixLM-ICL, causalLM-ICL also
has ỹ(l)j = w

(l)
j xj , and

δ(l)query = −ỹ(l)query = −w(l)
n xquery .

In summary, causalLM-ICL and prefixLM-ICL are associated with different update rules: w
(l)
j

follows (10) while w(l) follows (3). Specifically, in causalLM, it can be seen that the w
(l−1)
i

‡There is another way of update which changes η/n to η/j for the j-th example. We provide more details in
Appendix D and show it performs worse than the main version in (8).
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corresponding to the first positions are biased due to restricted access to only a few data points and
furthermore, that these biases are propagated to later positions by (10). In prefixLM on the other hand,
each position has access to all the data and a single w(l) can be used across the entire sequence as in
(3). Although Eq. (3) and Eq. (10) only hold for the structured LSA case, the profound difference
between causalLM and prefixLM stems from their architectural difference and therefore we believe
extends to general transformers, as indicated by our experimental results in Section 5.

4 CONVERGENCE OF THE MULTI-LAYER IN-CONTEXT LEARNERS

In this section, we prove that both multi-layer prefixLM and causalLM converge to their respective
stationary points with increasing layers (and with linear rates). In addition, we show that the stationary
point of prefixLM corresponds to the optimal least-square solution of the linear regression problem,
while the ones corresponding to causalLM are equivalent to the iterative weights of online gradient
descent of linear regression, which are known to be sub-optimal for a limited number of examples.

4.1 CONVERGENCE OF THE PREFIXLM ICL

The fact that a multi-layer prefixLM computation exactly follows the update rule of w(l) as in (3),
implies that the layer outputs of prefixLM have the same dynamics of multi-step gradient descent on
a linear regression problem. The convergence properties of such dynamics are well-known, and are
stated in the following proposition:

Proposition 3 If w(l) follows the iterative updates of (3), then there exists a stationary point w∗

with coefficients satisfying:

yX⊤ = w∗ XX⊤,

where y = (y1, . . . , yn) and X = (x1, . . . ,xn). Furthermore, the iterative weights w(l) converge to
w∗ with a linear rate of convergence:

w(l)−w∗ = (w(l−1)−w∗)(I− η

n
XX⊤).

That is, Proposition 3 holds for the multi-layer prefixLM, so that the same exact w∗ is also the
stationary point of prefixLM, to which it converges in a linear rate. Furthermore this stationary point
is exactly the (optimal) least square solution of the linear regression problem.

4.2 CONVERGENCE OF THE CAUSALLM ICL

Following the update rule of (10), we can view a multi-layer causalLM as implicitly maintaining
different weight vectors wj for each position j. In what follows, we show that: (a) Each such position
j has its own stationary point w∗

j , which appears to be different from the global optimal point w∗ of
linear regression; (b) even when the number of in-context samples n grows to infinity, convergence to
w∗ is not guaranteed.

Specifically, in Appendix B we provide a proof for the following proposition:

Proposition 4 If w(l)
j =

∑j
i=1 a

(l)
i,j x

⊤
i follows the iterative updates of (10), then

a
(l)
i,j = a

(l)
i,i ≡ a

(l)
i ∀j ≥ i,

and there exist stationary points w∗
j =

∑j
i=1 a

∗
i x

⊤
i (for j ∈ 1, . . . , n) with coefficients from

a∗ = (a∗1, . . . , a
∗
n) that satisfy y = a∗ T, where

T =


x⊤
1 x1 x⊤

1 x2 · · · x⊤
1 xn

0 x⊤
2 x2 · · · x⊤

2 xn

...
...

. . .
...

0 0 · · · x⊤
n xn

 .

Furthermore, the coefficients a(l) converges to the stationary point a∗ with linear rate of convergence:

a(l)−a∗ = (a(l−1)−a∗)(I− η

n
T).

6
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This proposition implies that the stationary points w∗
j of causalLM-ICL are different from w∗, the

least square solution of linear regression. However, a natural question is: if j increases, would w∗
j

ultimately converge to the optimal solution?

To answer this question, the next proposition shows that the stationary points w∗
j follow an online

gradient descent algorithm, whose loss and gradient at the j-th step is,

Lj(wj) =
1

2
(wj xj+1−yj+1)

2,

∇wj
Lj(wj) = (wj xj+1−yj+1)x

⊤
j+1 .

Proposition 5 Assuming that w∗
j is the stationary points obtained in Proposition 4, then

w∗
j+1 = w∗

j −
1

∥xj+1 ∥22
∇w∗

j
Lj(w

∗
j ). (11)

The proof of Proposition 5 is provided in Appendix B. Note that online gradient descent is known
to converge to an optimal solution only with a decaying step size j−ν for ν > 0 (Jentzen &
Von Wurstemberger, 2020). Since the step size of (11) does not decay, we conclude that causalLM
may not converge to w∗ even with increasing layers and increasing number of in-context examples.
More concretely, as for the case of in-context learning, where the number of in-context examples n is
limited, convergence to the optimal solution w∗ cannot be achieved by causalLM-ICL.

5 NUMERICAL EXPERIMENTS

Our experiments contain three parts.

• We first use LSA-transformers on linear regression problems to directly verify our theorems. In
Section 5.1, we show that despite that the in-context example (training) error of causalLM and
prefixLM both decays in linear rates, the query (test) error of causalLM is significantly larger,
which indicates its stationary solution is not optimal.

• Secondly, we use ordinary softmax transformers on a few synthetic tasks including linear re-
gression, nonlinear regression and multiclass classification. In Section 5.2, we show that our
theoretical insights generalize to other tasks types (i.e., that ICL prefixLM still outperforms
causalLM in all these cases).

• Lastly, in Section 5.3, we conduct LLM based ICL experiments using T5 (Roberts et al., 2022).
We also provide additional experimental results on PaLM2 (Google et al., 2023) as well as large
multimodal models (PaLI-X, Chen et al. (2023)) in Appendix E.6 and E.7.

5.1 LSA-TRANSFORMERS ON LINEAR REGRESSION

In order to directly verify our theorems from Section 4, we first study in-context learning on linear
regression problem with the LSA transformer of (5). Each of the input sequence contains 40 in-
context examples and 200 queries, and each query attends to all the in-context examples but does not
attend to each other. See Appendix E for an illustration. The data input xi of the sequence is sampled
from U(−1, 1)16. Each sequence is associated with a single weight vector w that is sampled from
N (0, I), and the labels are computed as yi = wxi. Assuming the prediction of each layer is ỹ(l)i , we
evaluate the MSE ∥yi − ỹ

(l)
i ∥22 on both in-context and query examples across different layers l.

The results are plotted in Figure 2 left (for prefixLM) and middle (for causalLM). Our results are
averaged over 64 randomly generated sequences. As we can see, although both prefixLM and
causalLM has a linear rate of convergence (with respect to the number of layers) on the in-context
examples, the query errors of causalLM are stuck above the 10−1 level, while the query error of
prefixLM decays in the same linear rate as its training error.

Furthermore, in Figure 2 right, we plot the query errors of the stationary points (following Proposi-
tion 4, corresponding to the outputs of infinite layers) of causalLM-ICL with increasing number of
in-context examples up to 300. Although causalLM-ICL is able to eventually converge to optimal
solution when µx = 0, it takes more than 100 examples to reach below 10−2. The convergence is

7
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Figure 2: Left/Middle: the MSE on in-context examples and query examples of multi-layer LSA-
based prefixLM/causalLM-ICLs with 40 in-context training examples. Right: the query MSE of
causalLM-ICL’s stationary points (per Proposition 4) using up to 300 in-context examples.

LR N-LR MC
PrefixLM-SL 8.6e-3 1.5e-4 24.1
CausalLM-SL 1.9e-1 2.7e-3 27.0
PrefixLM-UL 2.5e-3 9.0e-5 27.6
CausalLM-UL 1.6e-2 2.9e-3 32.1

Table 1: The test query errors of the unshared-layer (UL) and sharing-layer (SL) transformer-ICLs on
linear regression (LR), non-linear regression (NLR), and multiclass classification (MC) tasks. Both
regression tasks report mean squared errors; and the MC task reports the classification error.

even worse as we vary the input distribution x ∼ U(−1, 1)d + µx with increasing µx ∈ {0, 1, 2, 3},
which demonstrates that causalLM-ICL is not optimal for few-shot ICL.

5.2 STANDARD TRANSFORMERS ON SYNTHETIC TASKS

Previous experiments provided a proof of concept verification of the propositions from Section 4.
Next we verify if a standard softmax transformer-based prefixLM and causalLM ICL exhibit similar
differences on various types of synthetic tasks including linear regression, non-linear regression and
multiclass classification.

All three tasks used 16-dim inputs with x ∼ U(−1, 1)16 and w ∼ N (0, I). For non-linear regression,
we apply a sigmoid activation on the logit such that y = sigmoid(wx); and for multiclass classifica-
tion, we randomly generate three wc ∼ N (0, I), and assign labels based on y = argmaxc {wc x}.
We trained a few 24-layer transformers containing 128 hidden units and 2 heads. Besides of the
comparisons of prefixLM and causalLM, we also compare the transformers with or without sharing
layers (SL vs UL). In particular, the sharing-layer transformer can be considered a recurrent sys-
tem (Dehghani et al., 2018) where the dynamic is continual along the layers and a stationary point
may exist given infinite number of layers, which makes it closer to our constructed LSA.

The ICL training dataset contains 64,000 training sequences. Each sequence contains 40 in-context
examples and 20 queries, where queries are independent of each other similar to Section 5.1. The
transformers are trained with batch size 64 for 100 epochs. More details of the hyper-parameters of
the experiments are provided in Appendix E.

We evaluate the ICL performance using 64 holdout test sequences and report the test errors on
the query examples. The results are summarized in Table 1. We find that both prefixLM-SL and
prefixLM-UL significantly outperform their counterparts of causalLM in all cases. As a side note,
transformer-SL appears to outperform transformer-UL in the classification tasks, which indicates the
overfitting problem of the latter due to over-parameterization. In addition, we also add probes at the
output of each SL-transformer layer to visualize the test errors of intermediate layers in Figure 3.
Comparing Figure 3 and Figure 2 (left/middle) reveals some similarities. Although the test query
errors of causalLM decay in roughly the same rate as the ones of prefixLM in earlier layers, the
decays become much slower in later layers possibly due to the nature of its non-optimal stationary
points. These results suggest that the title argument of the paper also holds beyond LSA-based
transformers and linear regression.
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Figure 3: The test query errors of the 24-layer SL-transformers based prefixLM/causalLM-ICLs on
linear regression (left), non-linear regression (middle), and multiclass classification (right).

MMLU BBH
Base Large XL Base Large XL

PrefixLM 28.8 32.0 39.5 27.4 32.2 35.8
CausalLM 28.0 26.9 30.5 24.8 29.8 32.0

Table 2: The averaged test query accuracies on 5-shot MMLU (57 tasks) and 3-shot BBH (23 tasks)
with FLAN-finetuned T5 DecoderOnly prefixLM/causalLM checkpoints.

5.3 ICL ON LARGE LANGUAGE MODELS

In order to compare the ICL performance of causalLM and prefixLM in a large language model
setting, we conduct experiments using the publicly available T5 family of models (Roberts et al.,
2022). Note that the existing public T5X § checkpoints are all based on EncDec models, which are
similar to prefixLM. Thus, it would be unfair and unnatural to compare with causalLM by simply
replacing the bidirectional attention of the encoder to the causal attention during the finetuning
stage. To make a more reasonable comparison, we reran the pretraining stages of T5 on the C4
corpus (Raffel et al., 2020a) from a random initialization point using a span corruption objective,
but in the DecoderOnly setting. Moreover, for each size (from Base, Large and XL) of the models,
we pretrained two checkpoints, one with prefixLM and the other with causalLM, each for 1M
steps using the same T5 pretraining recipe. After pretraining, we use the FLAN recipe (Chung
et al., 2022) to finetune each checkpoint (40k steps for Base, 20k steps for Large and XL) with its
pretrained attention mask and evaluate the ICL capability of the finetuned models on two benchmarks:
MMLU (Hendrycks et al., 2020) and BBH (Suzgun et al., 2022).

Table 2 shows that for all three sizes of T5X DecoderOnly models, the MMLU and BBH accuracies
of prefixLM surpasses that of causalLM consistently and such gap widens as the size of the model
becomes larger. This result empirically verifies that our conjecture generalizes to the practical case.
We supply additional empirical evidence on state-of-the-art models in Appendix E.6 and E.7.

6 CONCLUSION

In this paper, we analyzed the convergence properties of two types of widely-used transformer-based
language models (causalLM and prefixLM), during in-context learning. Using a simplified LSA
attention in a linear regression setting, we proved that both LM types converge to their stationary
points in linear rates, but that their stationary points have significantly different properties. In
particular, the stationary points of prefixLM coincides with the optimal least square solution; while
the ones of causalLM is equivalent to the weights of an online learning system, that is not guaranteed
to converge to the optimal solution. Our experiments verified the above theoretical results, and also
empirically extend the findings to general transformer on non-linear regression as well as classification
tasks. Finally, we compare causalLM and prefixLM on a few large language models and find that
prefixLM also consistently wins over causalLM in practical few-shot tasks.

§https://github.com/google-research/t5x
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CausalLM is not optimal for in-context learning

Appendices

A RELATED WORK

Ever since GPT-3 (Brown et al., 2020) exhibited its in-context learning abilities in various language
inference and translation tasks, there has been tremendous interest in understanding the mechanics
behind In-Context Learning (ICL). Currently, there are two main camps of thought that try to explain
ICL: (1) the representation camp, which views ICL behavior as a topic model that extracts relevant
memories based on the topic of the context (Xie et al., 2021; Min et al., 2022) - these works support
this view with the findings that in-context learner sometimes behaved similarly even when the label
of the training examples were permuted (Min et al., 2022). (2) the algorithmic camp, which holds that
LLMs learns to implement a learning algorithm (Garg et al., 2022; Akyürek et al., 2022; Von Oswald
et al., 2023) and then run it during ICL - these works usually propose a construction of the transformer
parameters and show that it can solve certain simple tasks (e.g. linear regression), then empirically
verify that transformers track the behavior of the algorithm of interest.

Moreover, recent studies of large-scale data and model (Wei et al., 2023) discovered that large
language models seem to exhibit certain emergent behavior, where, ICL is memory-based on small-
to-medium sized models or data, but becomes more algorithm-based on larger model and data. For
example, (Wei et al., 2023) showed that a large language model is able to respond accordingly to the
flipped label in in-context examples, opposing the findings of (Min et al., 2022).

Since most ICL applications only involve few shots of context examples, it seems reasonable to
conjecture that the memory of a deep representation and a shallow predictor algorithm may co-exist in
contributing the in-context learning capabilities. Since the representation learning of large language
models have been universally acknowledged, it is more interesting to investigate how transformer
learns to in-context learn shallow predictors with few-shot examples.

Focusing on work from the algorithmic camp, we note that (Garg et al., 2022) were the first to
suggest using linear regression to study in-context learning. The authors empirically found that a
12-layer transformer is able to achieve similar results as a least-square solver on a 20-dim linear
regression problem with around 20 in-context examples. Beyond linear regression, they also found
that transformers can in-context learn a few other classes of shallow predictors, including two-layer
Relu networks.

Probably the first formal theoretical investigation of the linear regression in-context learners is
(Akyürek et al., 2022). They first showed that a transformer layer can approximately conduct four
basic operations: mov, mul, div, aff. They then cleverly combined these four operations and showed
that a gradient descent step of linear regression can be implemented with a 4-head 8-layer transformer
with O(d) hidden units, where d is the dimension of the inputs x. Despite their novel construction,
the result itself provides only a loose upper bound on the model size (or depth) that is required for
simulating linear regression within a transformer - for example, (Von Oswald et al., 2023) reported
that a 2 or 5-layer transformer already achieves significantly better results than a single-step gradient
descent for linear regression.

Because of the significant discrepancy between the construction of (Akyürek et al., 2022) and the
empirical results, the one-layer LSA construction of (Von Oswald et al., 2023) appears to be more
appealing and matches the experimental results better. Moreover, a most recent work by (Zhang et al.,
2023) used gradient flow to prove that by initializing w(0) = 0, such matrix constructions can indeed
be learned by an LSA transformer. This is why our paper follows this construction and studies its
multi-layer convergence properties with different types of attention (prefixLM vs causalLM).

In terms of the comparison between prefixLM and causalLM, such research work can be traced
back as early as (Raffel et al., 2020b), where they showed prefixLM outperforms causalLM in
varieties of NL tasks. Later, UL-2 (Tay et al., 2022) proposed to mix prefixLM and span corruption
objectives, and found it to be more efficient than the causalLM objective alone. It was also shown
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in (Chung et al., 2022), that U-PaLM (a UL2-finetuning PaLM) outperforms PaLM (causalLM only)
in various ICL tasks. Indeed, for the reasons above, some of the latest models have included prefixLM
objectives in the pretraining mix (for example PaLM-2 by Google et al. (2023)). On the other hand,
prominent models such as Flamingo as well as the ones in the GPT-family are still based on the
causalLM structure, so the comparison between prefixLM and causalLM remains important and
relevant. Furthermore, all previous studies were done in an empirical manner, whereas we set out to
explain their differences from a theoretical perspective and back the theory with empirical evidence.
While we are not the first to follow this path, our work is the first to provide a theoretical justification
for the advantage of prefixLM over causalLM in a multi-layer transformer ICL setting by analyzing
their theoretical convergence properties.

B PROOFS

In this section, we provide proofs of the propositions introduced in Section 3 and Section 4.

Proposition 1 For a multi-layer LSA satisfying (5) with w(0) = 0, if its input Z is formatted as (4),
then its l-th layer output is z(l)j = (x⊤

j , δ
(l)
j )⊤, where δ(l)j = yj −w(l) xj and w(l) is the weight from

the l-th step gradient descents as in (3).

Proof: Plugging in K, Q, P and V of (5) with w(0) = 0 into (1), we have(
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=
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It is easy to see that zj never changes its first d-dimension corresponding to xj . Therefore, we can
simplify the above equation and focus only on the last coordinate δ

(l)
j , where we have

δ
(l)
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(l−1)
i x⊤

i xj , (12)

with δ
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Next we prove ỹ
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j = w(l) xj by induction. Since w(0) = 0, it is clear that ỹ(0)j = w(0) xj = 0 for

all j.
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Proposition 2 For a multi-layer causalLM-LSA satisfying (5) with w(0) = 0, if its input Z is
formatted as (4), then its l-th layer output is z(l)j = (x⊤

j , δ
(l)
j )⊤, where δ

(l)
j = yj −w

(l)
j xj and w

(l)
j

follow (10).

Proof: Plugging in K, Q, P and V of (5) with w(0) = 0 into (2), we have
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Proposition 3 If w(l) follows the iterative updates of (3), then there exists a stationary point w∗

with coefficients satisfying:

y x⊤ = w∗ XX⊤,

where y = (y1, . . . , yn) and X = (x1, . . . ,xn). Furthermore, the iterative weights w(l) converges
to the stationary point w∗ with linear rate of convergence:

w(l)−w∗ = (w(l−1)−w∗)(I− η

n
XX⊤).

Proof: From (3), we have

w(l) = w(l−1) +
η

n

n∑
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⊤
i︸ ︷︷ ︸

(∗)

.

The stationary point must satisfy (∗) = 0. Written in vectorized form, we have

yX⊤ = w∗ XX⊤ . (14)

Now plugging (14) back to (3), we have

w(l) = w(l−1) +
η

n

(
w∗ XX⊤ −aw(l−1) XX⊤

)
,

which can be reorganized to

w(l)−w∗ = (w(l−1)−w∗)(I− η

n
XX⊤).

□
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Proposition 4 If w(l)
j =

∑j
i=1 a
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i,j x
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Furthermore, the coefficients a(l) converges to the stationary point a∗ with linear rate of convergence:

a(l)−a∗ = (a(l−1)−a∗)(I− η

n
T).

Proof: First notice that according to (10), we have
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Since a(0)i,j = 0, and the above update is the same for any j given any i, then it is obvious by induction
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(l)
i = a

(l−1)
i +

η

n

(
yi −

i∑
k=1

a
(l−1)
k x⊤

k xi

)
︸ ︷︷ ︸

(∗)

. (15)

The stationary points satisfy (∗) = 0, which gives

y1 =a∗1 x
⊤
1 x1

y2 =a∗1 x
⊤
1 x2 +a∗2 x

⊤
2 x2

. . .

yn =a∗1 x
⊤
1 xn + . . .+ a∗n x

⊤
n xn,
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or in the vectorized form y = a∗ T, where

T =


x⊤
1 x1 x⊤

1 x2 · · · x⊤
1 xn

0 x⊤
2 x2 · · · x⊤

2 xn

...
...

. . .
...

0 0 · · · x⊤
n xn

 .

Now plugging in y = a∗ T back to (15) and vectorize it, yields

a(l) = a(l−1) +
η

n
(a∗ T−aT) ,

which can be reorganized to

a(l)−a∗ = (a(l−1)−a∗)(I− η

n
T).

□

Proposition 5 Assuming that w∗
j is the stationary points obtained in Proposition 4, then

w∗
j+1 = w∗

j −
1

∥xj+1 ∥22
∇w∗

j
Lj(w

∗
j ).

Proof: Recall the online learning system with a sequence of data-label pairs (xj , yj) has the
following online loss and its gradient at the j-th step,

Lj(wj) =
1

2
(wj xj+1−yj+1)

2,

∇wj
Lj(wj) = (wj xj+1−yj+1)x

⊤
j+1 .

According to Proposition 4, we have y = a∗ T, which gives

yj+1 =a∗1 x
⊤
1 xj+1 + . . .+ a∗j x

⊤
j xj+1

+ a∗j+1 x
⊤
j+1 xj+1

=w∗
j xj+1 +a∗j+1 x

⊤
j+1 xj+1 (16)

where the last equation is due to w∗
j =

∑j
i=1 a

∗
i x

⊤
i .

Since w∗
j =

∑j
i=1 a

∗
i x

⊤
i , we have

w∗
j+1 =w∗

j +a∗j+1 x
⊤
j+1

=w∗
j +

1

∥xj+1 ∥22

(
a∗j+1 x

⊤
j+1 xj+1

)
x⊤
j+1

=w∗
j −

1

∥xj+1 ∥22
(w∗

j xj+1−yj+1)x
⊤
j+1

=w∗
j −

1

∥xj+1 ∥22
∇w∗

j
Lj(w

∗
j )

where the third equation is because of (16). □

C MULTI-LAYER LSA CONSTRUCTION WITH NON-ZERO W(0)

In this section, we introduce the proposition that connects a multi-layer LSA following the construc-
tion of (5) but with non-zero w(0) and the multi-step gradient descents of linear regression.

Proposition 6 For a multi-layer LSA satisfying the construction (5), if its input Z is formatted as (4),
then its l-th layer output is z(l)j = (x⊤

j , δ
(l)
j )⊤, where δ

(l)
j = yj − (w(l)−w(0))xj and w(l) is the

l-th updated weight from the gradient descents update rule in (3).

17



Published as a conference paper at ICLR 2024

Proof: Plugging in K, Q, P and V of (5) into (1), we have

δ
(l)
j = δ

(l−1)
j − η

n

n∑
i=1

(
δ
(l−1)
i −w(0) xi

)
x⊤
i xj , (17)

with δ
(0)
j = yj . Defining ỹ

(l)
j = yj − δ

(l)
j +w(0) xj and rearranging the (17), we obtain ỹ

(0)
j = 0 and

ỹ
(l)
j = ỹ

(l−1)
j +

η

n

n∑
i=1

(yi − ỹ
(l−1)
i )x⊤

i xj .

Then it is easy to prove ỹ
(l)
j = w(l) xj by induction, similar to the proof of Proposition 1. □

D CAUSALLM WITH ATTENTION-LENGTH-BASED COEFFICIENTS

Since there are j terms in the summation of (10), another reasonable update for causalLM would be

w
(l)
j = w

(l−1)
j +

η

j

j∑
i=1

(yi −w
(l−1)
i xi)x

⊤
i , (18)

which we call causalLM2. For causalLM2, we have the following proposition.

Proposition 7 If w(l)
j =

∑j
i=1 a

(l)
i,j x

⊤
i follows the iterative updates of (18), then

a
(l)
i,j ≡

1

j
a
(l)
i ∀j ≥ i,

and there exists stationary points w∗
j = 1

j

∑j
i=1 a

∗
i x

⊤
i (for j ∈ 1, . . . , n) with coefficients from

a∗ = (a∗1, . . . , a
∗
n) that satisfy y = a∗ S, where

S =


x⊤
1 x1

1
2 x

⊤
1 x2 · · · 1

n x⊤
1 xn

0 1
2 x

⊤
2 x2 · · · 1

n x⊤
2 xn

...
...

. . .
...

0 0 · · · 1
n x⊤

n xn

 .

Furthermore, the coefficients a(l) converges to the stationary point a∗ with the following rate of
convergence:

a(l)−a∗ = (a(l−1)−a∗)(I−η S).

The condition number κ(S) is about n/2 greater than the one of κ(T), which makes causalLM2
converge much slower than causalLM.

One can also prove that the stationary point of causalLM2 corresponds to the following online system
with online loss and gradient at the j-th step,

Lj(w̃j) =
1

2
(w̃j xj+1−yj+1)

2,

∇w̃jLj(w̃j) = (w̃j xj+1−yj+1)x
⊤
j+1,

where w̃ = j
j+1 w.

Proposition 8 Assuming that w∗
j is the stationary points obtained in Proposition 4, then

w∗
j+1 = w̃∗

j −
1

∥xj+1 ∥22
∇w̃∗

j
Lj(w̃

∗
j ).

Since the step does not have j−ν (ν > 0) decay, such online system is not guaranteed to converge,
therefore suffers the same problem as the original causalLM in Section 3.2.

In Figure 4, we plot the query MSE error of the stationary points of causalLM2-ICL with increasing
number of in-context examples. We can see that the online system corresponding to causalLM2-ICL
converges even slower than the ones of causalLM-ICL in Figure 2 right.
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Figure 4: The test error on the stationary point of the causalLM2-ICL with up to 300 in-context
examples.

Figure 5: The illustration of the attention mask. Green arrows represent the attentions between in-
context examples. The dashed arrows only applies for prefixLM. Red arrows represent the attentions
from queries to in-context examples. The query examples should not attend to themselves because
the inputs do not contain labels.

E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

E.1 EXPERIMENT SETTINGS FOR SECTION 5.1

In order to directly verify the theorem, we used the constructed LSA-based transformer, with

K = Q =

(
Id×d 0
0 0

)
, V =

(
0d×d 0
0 −1

)
and P = η

n I. Although not a trained transformer, it

was recently proved in (Zhang et al., 2023) that a randomly initialized LSA-transformer does converge
to such a construction. In addition, we did an ablation test of η = {0.1, 0.2, 0.4, 0.8, 1.6, 3.2} and
chose η = 1.6 as it converges the fastest without any divergence problems.

We randomly generated 64 sequences for ICL evaluation. For each sequence, we put the first 40
examples as the in-context examples and the last 200 examples as the query examples. The queries
are independent of each other without attention. See Figure 5 for an illustration of the transformer
attention mask. Such multi-query design is for training efficiency purpose only and is equivalent to
200 sequences with the same w and input examples xi, but different one query per sequence.

E.2 EXPERIMENT SETTINGS FOR SECTION 5.2

In order to verify that our theorems can be qualitatively applied beyond LSA and linear regression, we
conducted several experiments over various synthetic tasks using regular transformers. We based our

19



Published as a conference paper at ICLR 2024

LR N-LR MC
PrefixLM-SL-L2 8.6e-3 1.5e-4 24.1
CausalLM-SL-L2 1.9e-1 2.7e-3 27.0

PrefixLM-SL-no-L2 6.7e-3 1.5e-4 24.5
CausalLM-SL-no-L2 5.0e-2 1.9e-3 30.5

PrefixLM-UL-L2 7.6e-3 1.7e-4 26.7
CausalLM-UL-L2 4.4e-2 2.5e-3 30.4

PrefixLM-UL-no-L2 2.5e-3 9.0e-5 27.6
CausalLM-UL-no-L2 1.6e-2 2.9e-3 32.1

Table 3: The test query errors of the unshared-layer (UL) and sharing-layer (SL) transformer-ICLs
with or without L2 regularizer on linear regression (LR), non-linear regression (NLR), and multiclass
classification (MC) tasks.
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Figure 6: The test query errors of the SL-transformers based prefixLM/causalLM-ICLs with various
numbers of training sequences on linear regression (left), non-linear regression (middle), and multi-
class classification (right).

code from the repository of (Akyürek et al., 2022)¶ and applied their default training hyperparameters
of the code. We used a transformer of 24 layers with 128 hidden units and 2 heads. The FFN
intermediate size is 4 × 128 = 512. The learning schedule is based on cosine decay with base
learning rate 1e-4, for 100 epochs. In addition, since the target of the outputs of the in-context
examples are 0 (see Fig. 1), we optionally add an additional L2 regularizer on the outputs of the
in-context examples. See the comparison between the transformers with or without the L2-regularizer
in Table 3. In Table 1 of the main paper, the reported numbers correspond to the SL-transformer
with the L2 regularizer and the UL-transformer without the L2 regularizer. Across all these settings
prefixLM consistently beats causalLM as our theorem predicts.

E.3 THE IMPACT OF THE SIZE OF THE TRAINING DATA

Here we investigate the performance of prefixLM and causalLM as a function of the number of
training samples. In Fig. 6, we plot their after having trained on 10 batches all the way up to 1000
batches (as in Section 5.2). We observe that when the amount of training data is low, ICL falls into the
memorization regime, in which models perform perfectly on the training data, but do not generalize
well to unseen test sequences. However, prefixLM transitions to the generalization regime earlier
than causalLM, which is reflected by the positions of the largest gap between the two. (30 batches in
LR, 100 batches in N-LR, and 10 batches in MC).

E.4 TESTING WITH FEWER IN-CONTEXT EXAMPLES

In causalLM, different positions in the sequence are trained with different numbers of in-context
examples (ICEs). This may bring advantage to pretrained causalLM models when tested with fewer
number of in-context examples than it was trained on. To compare causalLM and prefixLM in such
setting, we use the same models as before that were trained with 40 in-context examples, but test
them on fewer (16, 24, 32) in-context examples. Note that 16 is the minimum number of examples to

¶https://github.com/google-research/google-research/tree/master/
incontext
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16 Test ICEs LR N-LR MC
PrefixLM-SL 1.01 2.1e-2 42.8
CausalLM-SL 1.76 2.7e-2 43.3
PrefixLM-UL 0.97 1.9e-2 42.9
CausalLM-UL 1.12 3.2e-2 46.6

Table 4: The test query errors with 16 ICEs on linear regression (LR), non-linear regression (NLR),
and multiclass classification (MC) tasks.

24 Test ICEs LR N-LR MC
PrefixLM-SL 1.4e-1 2.0e-3 33.4
CausalLM-SL 7.0e-1 1.0e-2 35.9
PrefixLM-UL 1.0e-1 1.7e-3 37.1
CausalLM-UL 1.3e-1 1.0e-2 41.2

Table 5: The test query errors with 24 ICEs on linear regression (LR), non-linear regression (NLR),
and multiclass classification (MC) tasks.

solve our 16-dim synthetic regression problems. The errors of prefixLM and causalLM are provided
in the following Tables 4, 5, 6, where regression tasks (LR, N-LR) report mean squared errors and
the MC task reports the classification error. From the tables we see that prefixLM still consistently
outperforms causalLM, even when testing with fewer in-context examples than used during training
time.

E.5 PERMUTATION ON IN-CONTEXT EXAMPLES

We further consider a simple approach for mitigating the problems of causalLM by randomly
permuting the in-context examples during training time. This is motivated by the observation that
for causalLM, every permutation representations a different view of the context in the example. The
results of this experiment (Table 7) show that this style of causalLM training indeed improves over
the fixed order training setting compared to the unpermuted ICEs (Table 1). However, prefixLM still
outperforms causalLM in general.

E.6 IN-CONTEXT LEARNING USING PALM2

Going beyond the publicly available T5 models, we further verify our findings by conducting FLAN-
based finetuning experiments using the state-of-the-art PaLM2 family of models (Google et al.,
2023). PaLM2 models were pretrained with a mixture of objectives that includes different LM
types, which make them a relatively fair starting point to compare causalLM and prefixLM after
finetuning. In practice we finetune three sizes of PaLM2 language models: Gecko, Otter and Unicorn||.
We use the same default recipe for FLAN-PaLM2 finetuning (Google et al., 2023; Chung et al.,
2022) and finetune the PaLM2 checkpoints for either causalLM or prefixLM. We then evaluate the
ICL capability of the finetuned models on the Massive Multi-task Language Understanding (5-shot
MMLU) tasks (Hendrycks et al., 2020).

||https://blog.google/technology/ai/google-palm-2-ai-large-language-model/

32 Test ICEs LR N-LR MC
PrefixLM-SL 2.4e-2 4.7e-4 32.4
CausalLM-SL 3.1e-1 5.0e-3 34.6
PrefixLM-UL 9.5e-3 3.4e-4 36.2
CausalLM-UL 4.0e-2 5.7e-3 37.3

Table 6: The test query errors with 32 ICEs on linear regression (LR), non-linear regression (NLR),
and multiclass classification (MC) tasks.
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Permuted ICEs LR N-LR MC
PrefixLM-SL 9.0e-3 1.5e-4 24.1
CausalLM-SL 1.9e-1 2.5e-3 26.9
PrefixLM-UL 2.6e-3 9.5e-5 26.1
CausalLM-UL 1.1e-2 1.8e-3 26.2

Table 7: The test query errors with randomly permuted ICEs on linear regression (LR), non-linear
regression (NLR), and multiclass classification (MC) tasks.

Gecko Otter Unicorn
PrefixLM 46.6 64.8 81.4
CausalLM 43.3 61.0 78.0

Table 8: The average test query accuracies on 5-shot MMLU tasks with FLAN-finetuned PaLM2-
Gecko/Otter/Unicorn prefixLM/causalLM checkpoints. (Google et al., 2023) reported a similar
averaged accuracy of 81.2 on Unicorn-PrefixLM.

Table 8 shows that for all three sizes of PaLM2, the MMLU accuracy (average over the 57 tasks) of
prefixLM surpasses that of causalLM by more than 3%. This result again empirically verifies that our
conjecture generalizes to the practical case, using a state of the art LLM**.

E.7 IN-CONTEXT LEARNING WITH MULTIMODAL MODELS

Lastly, we also demonstrate that prefix attention masks benefit ICL in multimodal models across
various settings. We conducted experiments using both 4-shot and 8-shot COCO image captioning
tasks on the Karpathy split (Karpathy & Fei-Fei, 2015) using the PaLI-X model (Chen et al., 2023), a
55B multimodal pretrained model.

The PaLI-X model employs an encoder-decoder architecture where ViT encoded image tokens and
text tokens are fed to the multimodal encoder and decoder to generate outputs. During pretraining,
the text prompts were split into two parts. The first part is the input to the multimodal prefix-encoder
that self-attends to all the image and text tokens on the encoder side, following the style of prefixLM.
The second part is the input to the causal-decoder that self-attends to only the previous text tokens on
the decoder side, following the style of causalLM, and cross-attends to encoder tokens.

The prefix-encoder and causal-decoder nature allows us to consider different variants of the attention
masks and placements of the in-context texts to showcase the benefits of prefix attention masks. We
design two main categories of few-shot experiments with five self-attention mask settings, detailed
below. We finetune the PaLI-X pretrained model using each setting’s attention mask with 4-shot
Episodic WebLI dataset (Chen et al., 2023) for 20k steps.

In the first category, we place the few-shot text tokens on the encoder side and study the effect of
manipulating the encoder self-attention masks, leaving the causal-decoder unchanged. Specifically,

**Besides of PaLM2, we also find that any checkpoint that is pretrained with a mixture of prefixLM and
causalLM tends to do better with prefixLM for in-context learning. However, we do not claim that prefixLM
would necessarily outperform causalLM when using solely causalLM pretrained checkpoints.

4-shot 8-shot
Prefix encoder 106.7 107.5
Block-causal encoder 104.8 106.0
Causal encoder 102.3 104.9
Prefix decoder 103.9 104.2
Causal decoder 102.4 92.9

Table 9: Cider scores of COCO captioning using various attention masks. The Prefix variant
outperforms the Causal ones. Note that the official PaLI-X (Chen et al., 2023) reported a 4-shot Cider
of 107.6, which was also based on the prefix encoder mask, but was finetuned with additional image
captioning data from the Conceptual Captions 3M dataset (Sharma et al., 2018).
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considering a 2-shot ICL case for simplicity, we adapt the prefix encoder attention mask Aenc
prefix in

(19) into two causal variants, block-causal and causal encoder attention masks as Aenc
b−causal in (20)

and Aenc
causal in (21). In this case, the block-causal version is more inline with exposing the encoder

to the examples one at a time, while the causal one strictly follows auto-regressive attention.

Aenc
prefix =

I1 T1 I2 T2 It


1 1 1 1 1 I1
1 1 1 1 1 T1

1 1 1 1 1 I2
1 1 1 1 1 T2

1 1 1 1 1 It

(19)

Aenc
b−causal =

I1 T1 I2 T2 It


1 1 1 1 1 I1
1 1 1 1 1 T1

1 1 1 I2
1 1 1 T2

1 It

(20)

Aenc
causal =

I1 T1 I2 T2 It


1 1 1 1 1 I1
⧹ 1 1 1 T1

1 1 1 I2
⧹ 1 T2

1 It

(21)

I1, I2, It denotes the image tokens for the two shots and the target and T1, T2 denotes the text tokens
for the two shots. 1 denotes a matrix of all 1s and “⧹” denote an upper triangular matrix with 1s. A
1 at row i and column j indicates that token j is allowed to attend to token i. We report the results on
few-shot COCO captioning in the top half of Table 9. We observe consistent improvement over both
4- and 8-shot when changing the encoder attention mask from causal mask, to block causal mask,
and then to prefix mask.

Adec
causal =

T1 T2 Tt( )⧹ 1 1 T1

⧹ 1 T2

⧹ Tt

(22)

Adec
prefix =

T1 T2 Tt( )
1 1 1 T1

1 1 1 T2

⧹ Tt

(23)

Similarly, in the second category, we place the few-shot text on the decoder side and study the effect
of manipulating the decoder attention masks, leaving the prefix encoder unchanged. We adapt the
causal decoder attention mask Adec

causal in (22) to prefix attention mask Adec
prefix in (23). Note that

all the image tokens from the prefix-encoder side are visible to all text tokens (on the decoder) via
cross attention. However, the image tokens cannot attend to the text because of the encoder-decoder
architecture. The second half of Table 9 reports the results of using prefix and causal decoder attention.
Even though the decoder is pretrained in the causal manner, with additional finetuning using prefix
masks, the new prefix decoder achieves a Cider score of 103.9 in 4-shot ICL, outperforming the
finetuned causal decoder by 1.5. Furthermore, the prefix decoder also appears to be more robust when
extrapolating to 8-shot evaluation (Cider 104.2), compared to the causal decoder (Cider 92.9).

In summary, the LLM experiments in Section 5.3 as well as the multimodal experiments in this
section show that our conjectures hold up in practice with various types of large-scale models and a
wide range of settings.

23


	Introduction
	Background
	Transformers: SSA, LSA, causalLM, and prefixLM
	In-context learning
	Linear regression in-context learners

	Multi-layer in-context learner
	PrefixLM ICL
	CausalLM ICL

	Convergence of the multi-layer in-context learners
	Convergence of the prefixLM ICL
	Convergence of the causalLM ICL

	Numerical experiments
	LSA-transformers on linear regression
	Standard transformers on synthetic tasks
	ICL on large language models

	Conclusion
	Related Work
	Proofs
	Multi-layer LSA construction with non-zero w(0) 
	CausalLM with attention-length-based coefficients
	Additional experimental details and results
	Experiment settings for Section 5.1
	Experiment settings for Section 5.2
	The impact of the size of the training data
	Testing with fewer in-context examples
	Permutation on in-context examples
	In-context learning using PaLM2
	In-context learning with Multimodal Models


