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Abstract

We present the training recipe and results of scaling up PaLI-X, a multilingual
vision and language model, both in terms of size of the components and the
breadth of its training task mixture. Our model achieves new levels of performance
on a wide-range of varied and complex tasks, including multiple image-based
captioning and question-answering tasks, image-based document understanding
and few-shot (in-context) learning, as well as object detection, video question
answering, and video captioning. PaLI-X advances the state-of-the-art on most
vision-and-language benchmarks considered (25+ of them). Finally, we observe
emerging capabilities, such as complex counting and multilingual object detection,
tasks that are not explicitly in the training mix.

1 Introduction

The success of scaling language models [1, 2, 3, 4] makes it appealing to similarly scale Vision-
Language (V&L) models, and investigate the improvements, capabilities, and emergent properties of
such models. Inspired by the work in [5], we present PaLI-X, a multilingual vision and language
model with reusable scaled-up components, consisting of a pretrained large-capacity visual encoder
(using [6] as the starting point) and a pretrained language-only encoder-decoder (using [7] as the
starting point), further trained at-scale on a vision-and-language data mixture using a combination of
self-supervision and full-supervision signals.

One clear pattern that emerges from the combination of results from PaLI [5] and the work we
present in this paper is that scaling both V&L components together brings increases in performance
across a wide range of tasks. We show this by comparing against the same benchmarks used for
PaLI (Fig. 1, Left), and also against new benchmarks for which the new capabilities of PaLI-X are
evaluated (e.g., ChartQA, AI2D, DocVQA, InfographicVQA, as well as video understanding tasks).
We observe that scaling leads to large improvements over the results of the PaLI model, and also over
specialized large-scale models that are trained specifically to solve certain tasks, often with the help
of (often much larger) text-only LLMs [8]. In particular, we find that increasing both the effective
capacity of the vision component (which [9] does more unilaterally) and of the language component
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Figure 1: [Left] Comparing PaLI-X against PaLI on image-captioning and VQA benchmarks. [Right]
The Pareto frontier between few-shot and fine-tuned performance, comparing PaLI-X with PaLI [5],
Flamingo [10], and Kosmos-1 [11].

(which [10] also does unilaterally) is beneficial; the new PaLI-X model provides more balanced
parameter allocation than any other prior work (roughly 40%-60% split of the total capacity).

Aside from confirming the impact of scale, the original contribution of PaLI-X consists in leveraging
the mixture-of-objectives proposed in [7] for vision-and-language modeling, and showing that it
results in a model that improves both state-of-the-art results and the Pareto frontier for fine-tuning
and few-shot configurations (Fig. 1, Right).

We also observe emergent properties based on PaLI-X’s results compared to previous models with
similar architecture but smaller sizes. For instance, we report drastically improved performance on
the counting ability (See Table 1 and Appendix B), both for the plain variety (count all instances of a
class) and the complex variety (count instances based on a natural language description), that are
not attributable to training design1. Additionally, we present qualitative insights into the model’s
performance (Appendix A), with an emphasis on multilingual transfer learning such as the ability
to detect objects using non-English labels (Fig. 2), and the ability to switch between the language
of text present in the image (e.g., English) and the language of the generated image caption (e.g.,
Romanian).

Our technical contributions include the following:

1. We scale a Vision-Language model to achieve outstanding performance on a wide variety
of benchmarks. We observe that scaling both the Vision & Language components is
advantageous and report that performance remains unsaturated at this scale.

2. We show that training such a model with a mixture of objectives that combines prefix-
completion and masked-token completion improves the Pareto frontier for fine-tuning vs
few-shot performance at this scale.

3. We show that a high-capacity vision encoder (ViT-22B) can be effectively co-trained for
image classification and OCR label classification2 to achieve significant improvements on
V&L tasks for which the understanding of text-within-image is crucial.

4. Overall, PaLI-X improves SoTA results via fine-tuning on 15+ benchmarks, and we show
that it is the first of its kind to simultaneously adapt via multitask fine-tuning to a diverse set
of benchmarks without significant performance degradation.

2 Related Work

Similar to large language models such as GPT4 [12] and PaLM [1], the benefit of scale has also
been observed in recent vision and vision-language models. Flamingo [10] used a frozen language

1Plain counting is usually achievable via good object detection, while complex counting requires a fine-
grained understanding of the alignment between language-based specifications and visually-based occurrences.

2We use OCR tokens produced by the GCP Vision API over the training images as targets.
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component and demonstrated the benefit of scaling up this part up to 70B parameters on the few-shot
multimodal capabilities, while the vision encoder is fixed with 435M parameters. GIT [9], on the
other hand, explored scaling of the vision component up to 4.8B parameter, with a 300M parameter
language decoder. PaLI [5] explored jointly scaling the vision and language component, to 4B and
17B, respectively, and showed that scaling both components benefits a wide range of vision-language
tasks. All these models took advantage of vision and language unimodal pretrained models as
backbones to start multimodal training. Recently, on the vision model side, a vision transformer with
22B parameter has been introduced [6]. In this work, we make use of a ViT-22B model specifically
tuned for OCR capability to explore scaling Vision-Language models to even larger parameter regime.

As first shown in [13], large language models are sometimes able to solve new unseen tasks at
inference as long as a few examples –or shots– are provided as inputs. This is usually referred to as
in-context learning [14]. Follow-up work proposed improved ways to split and prompt the shots, such
as Chain of Thought [15] or Least-to-Most prompting [16]. So far, the vast majority of this work has
been done in the context of language inputs [17]. In this work, we explore multimodal in-context
learning with pairs of images and captions. Our work is aligned in spirit to Flamingo [10] that uses
interleaved image text pairs in the same web page and in-context tuning [18] during pre-training. We
first group the image-text pairs by url and split each group to a “shots” set and a “target” set. Then
we use the few examples in the “shots” set as input features to predict the examples in the target set.

Besides solving vision-language tasks in multiple domains, recent VLMs also attempted solving
these tasks at once instead of fine-tuning on each individual benchmark. Unified-IO [19] performed
multitask fine-tuning and reported solid results across 16 benchmarks. Spotlight [20] reported that
inside the UI domain, multitask fine-tuning can achieve a performance close to task-specific fine-
tuning. In this work, we show that PaLI-X can be simultaneously fine-tuned with a diverse set of
benchmarks in multiple domains without performance degradation.

3 Model

3.1 Architecture

The PaLI-X model architecture follows the encoder-decoder architecture: image(s) are processed by
a ViT encoder, with the resulting visual embeddings fed to an encoder-decoder backbone, along with
embeddings from additional text input (e.g., question / prefix / prompt). More details are provided in
Appendix A.

Visual component Our visual backbone is scaled to 22B parameters, as introduced by [6], the
largest dense ViT model to date. To equip the model with a variety of complex vision-language tasks,
we specifically focus on its OCR capabilities. To that end, we incorporate an OCR-based pretraining
as follows: images from the WebLI dataset [5] are annotated with OCR-text detected by GCP Vision
API; the encoder is then further pre-trained with a mixture of the original JFT-based classification
task and a new OCR-based classification task (whether or not a given token occurred in the image
according to OCR results). See Appendix A for additional details on the visual component. PaLI-X
is designed to take n >= 1 images as inputs (for few-shot and video understanding), with tasks
involving a single image as the n = 1 case. For n > 1, each image is independently processed by the
ViT module, and the patch-level embeddings coming out of ViT are flattened and concatenated to
form the visual input (See Appendix A). Note that similar to the single-image case, there is no pooling
over the spatial dimension before visual embeddings are aggregated over the temporal dimension.
That is, for an n-frame input with k-patches per frame, the resulting visual input has n ∗ k tokens.

Overall model The encoder-decoder backbone is initialized from a variant of the UL2 [7] encoder-
decoder model that uses 32B parameters. The architecture of this variant has 50 layers in both
encoder and decoder (up from 32 layers in [7]), and is pretrained on a mixture of text data similar
to [7]. The visual embeddings, after going through a projection layer, are concatenated with the token
embeddings of the text input, and fed to the encoder-decoder backbone. Most of the pretraining tasks
(with the exception of the masked image token task) predict text-only output from this multimodal
input. The text input to the model typically consists of a prompt that marks what type of task it is
(e.g., "Generate caption in ⟨lang⟩" for captioning tasks) and encode necessary textual input for the
task (e.g., "Answer in ⟨lang⟩: {question}" for VQA tasks). For tasks that need OCR capabilities,
we experiment with either relying solely on the text-encoding capabilities of the vision encoder, or
optionally including tokens extracted by an upstream OCR system fed as additional text inputs.
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Few-shot formulation In the few-shot setting, for a given target example the model receives a
number of “labeled” examples (in the form of additional ⟨image, text⟩ pairs) that we refer to as
shots/exemplars. The hypothesis is that information contained in these exemplars provides the model
with useful context to generate predictions for the target example. Formally, the input with N shots
is a sequence (t1, . . . , tN , tT , i1, . . . , iN , iT ), where t1 : tN and i1 : iN are texts and images for the
N shots, and tT and iT are the text (prompt) and image for the target example. PaLI-X processes
this input as follows: all images, including the target one, are first independently processed by the
visual encoder, and the resulting patch-level embeddings are flattened and concatenated to form the
visual input sequence. After going through a projection layer, they are concatenated with the text
embeddings to form the multimodal input sequence used by the encoder. We implement additional
optimizations including distributing the exemplars between the encoder and the decoder, and an
attention re-weighting mechanism (see Appendix B).

3.2 Pretraining Data and Mixture

The main pretraining data for our model is based on WebLI [5], consisting of roughly one billion
images with alt-texts from the web and OCR annotations (using the GCP Vision API), covering over
100 languages. In addition to WebLI ⟨image, text⟩ pairs, we introduce here Episodic WebLI data,
where each episode corresponds to a set of such pairs. We aim to have each episode contain loosely
related images (i.e., they are clustered according to their URL field), so as to encourage attention
among examples in an “episode”. We find this new dataset (with 75M episodes and around 400M
images in total) important for developing the few-shot capabilities of the model.

The pretraining mixture consists of the following data and objectives: (i) span corruption on text-
only data (15% of tokens); (ii) split-captioning on WebLI alt-text data [21, 5]; (iii) captioning
on CC3M [22] on native and translated alt-text data (over the same 35 languages covered by
XM3600 [23]); (iv) split-ocr [24] on WebLI OCR annotations; (v) visual-question-answering objec-
tive over ⟨image, question, answer⟩ pairs generated using the VQ2A method [25] over the CC3M
training split, over native and translated text (same 35 language pairs); (vi) visual-question-generation
objective, using the same pairs as above; (vii) visual-question-answering objective over ⟨image,
question, answer⟩ pairs using the Object-Aware method [26] (English only); (viii) captioning on
Episodic WebLI examples (target alt-text predicted from the remaining alt-text and images); (ix)
visual-question-answering on 4-pair examples (resembling Episodic WebLI and using VQ2A-CC3M
pairs), with the answer target conditioned on the other pairs of ⟨image, question, answer⟩ data. (x)
pix2struct objective, introduced in [27], targeting page layout and structure using screenshot images
paired with DOM-tree representations of html pages. (xi) Captioning on short video data, using
the VTP data [10] (using four frames per video). (xii) object-detection objective on WebLI data,
whereby an OWL-ViT model [28] (L/14) is used to annotate WebLI images, resulting in hundreds of
pseudo object labels and bounding boxes per image. (xiii) image-token prediction objective, whereby
we tokenize WebLI images (256×256 resolution) using a ViT-VQGAN [29] model with patch size
16×16 (256 tokens per image); this objective is framed as a 2D masked-token task (i.e., fill-in the
missing grid pieces, with the corresponding image pixels also masked). Note that the image-token
prediction objective is added mainly as a condition to check whether it adversarially impacts the
performance on language-output tasks; our ablation experiments show that is does not.

3.3 Training Stages

Our model is trained in two stages. In stage 1, the visual encoder (after mixed-objective training)
is kept frozen, while the rest of the parameters are trained on a total of 2.2B examples at the base
resolution 224×224 (native to ViT-22B), using the entire mixture. In stage 2, it continues training
using only the OCR-related objectives (pix2struct and split-ocr) plus the object detection objective;
this is done in several substages, during which image resolution is gradually increased to 448×448,
672×672 and finally 756×756.
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4 Experiments

4.1 Image Captioning and Visual Question Answering

Our results demonstrate that the larger capacity in PaLI-X scales well in both its vision and language
components, and it is particularly beneficial for more challenging scene-text and document under-
standing tasks. Our model outperforms the SOTA on diverse vision-language tasks, with significant
margins in some cases.

Benchmark datasets The Image Captioning and VQA benchmarks used for evaluation is sum-
marized in Appendix B, including 6 Image Captioning benchmarks (COCO (Karpathy split [30]),
NoCaps [31], TextCaps [32], VizWiz-Cap [33], Screen2Words [34], Widget-Cap [35]) and 13
VQA benchmarks (VQAv2 [36], OKVQA [37], TallyQA [38], TextVQA [39], VizWiz-VQA [40],
STVQA [41], OCRVQA [42], InfographicVQA [43], DocVQA [44], AI2D [45] ChartQA [46],
OVEN [47], InfoSeek [48]). These tasks span a wide range of visual domains, from natural images,
illustrations to documents and user interfaces (UIs). We also include results of multilingual captioning
on XM3600 in Appendix B.

4.1.1 Per-task fine-tuning results

Experimental setup We fine-tune PaLI-X with frozen ViT-22B; the learning rate follows a linear
decay from initial value 1e-4 for all fine-tuning experiments. See Appendix B for more details.

COCO NoCaps VQAv2 OKVQA TallyQA

Model Karp.-test val test test-dev test-std val simple complex

GIT2 [9] (5.1B) 145.0 126.9 124.8 81.74 81.92 - - -
Flamingo [10] (80B) 138.1 - - 82.0 82.1 57.8∗ - -
BEiT-3 [49] (1.9B) 147.6 - - 84.2 84.0 - - -
PaLM-E [50] (562B) 138.7 - - 80.0 - 66.1 - -
MoVie [51] - - - 69.26 - - 74.9 56.8
PaLI [5](17B) 149.1 127.0 124.4 84.3 84.3 64.5 81.7 70.9

PaLI-X (55B) 149.2 126.3 124.3 86.0 86.1 66.1 86.0 75.6

Table 1: Results on COCO Captions (Karpathy split), NoCaps, VQAv2 [36], OKVQA [37], and
TallyQA [38] with end-to-end modeling without OCR pipeline input (“simple” and “complex” are
test subsplits).

Text VizWiz Text VizWiz ST OCR Info Doc AI2D Chart Screen2 Widget OVEN Info
Model Caps Cap VQA VQA VQA VQA VQA VQA QA Words Cap Seek

with OCR pipeline input

SoTA 160.4 124.7 73.67 73.3 79.9 67.5 47.4 84.7 38.5 45.5 - - - -
[5] [5] [52] [5] [5] [53] [54] [54] [45] [46] - - - -

PaLI-X 163.7 125.7 80.78 74.6 84.5 77.3 54.8 86.8 81.4 72.3 - - - -

without OCR pipeline input

SoTA 145.0 120.8 67.27 70.7 75.8 71.3 40.0 76.6 42.1 70.5 109.4 141.8 20.0 17.7
[9] [9] [9] [5] [9] [27] [27] [27] [27] [8] [27] [20] [47] [48]

PaLI-X 147.0 122.7 71.44 70.9 79.9 75.0 49.2 80.0 81.2 70.9 127.9 153.0 23.1 21.8

Table 2: Results on benchmarks more focused on text understanding capabilities. For OVEN [47] &
InfoSeek [48], we follow the proposed 224×224 resolution settings for fair comparison.

First, we present benchmarks results for the condition where external OCR systems are not used
(Table 1, see Appendix B for an extended table.). The trend is that PaLI-X matches or improves SoTA
results on these benchmarks, with a particularly significant improvement on the TallyQA benchmark
over MoVie [51] (specialized counting model), at +11.1 for simple counting questions (e.g., “how
many giraffes”) and +18.8 for complex counting questions (e.g., “how many giraffes are drinking
water”); there are significant improvements over PaLI [5] as well, indicating that scale plays an
important role in the ability of such models to perform counting tasks. We additionally note the
state-of-the-art result on VQAv2 at 86.1 accuracy, achieved with an open-vocabulary generative
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approach, and the performance on OKVQA at 66.1 accuracy, matching the much-larger PaLM-E [50]
model performance.

Next, we examine text-heavy V&L benchmarks, for which upstream OCR systems can be used to
improve performance. As shown in Table 2, PaLI-X improves SoTA for all Captioning and VQA
benchmarks across the board, either without or with additional OCR input (using GCP Vision API).
For instance, a significant jump of +42.9 points is observed on AI2D3, a multiple-choice benchmark
where choices are provided along with each question. Being able to have the text choices as input
benefits PaLI-X compared with the previous SoTA Pix2Struct [27] which has to render the text on the
image, but this does not explain all the improvements. In a question-only configuration (no answer
choice present), PaLI-X achieves 46.3 on AI2D, more than 4 points higher than Pix2Struct’s result.

In general, having access to OCR texts extracted by an external OCR pipeline boosts performance.
Still, for several benchmarks (e.g., AI2D, ChartQA, OCRVQA and Widget-Cap), PaLI-X’s end-to-end
performance when using its intrinsic OCR capability is close to that leveraging additional OCR input.
A common feature for these benchmarks is that they have well-oriented text – diagrams, charts, book
covers or user interfaces, with reasonably large font size at 756×756 resolution. For tasks involving
scene text in natural images (TextCaps, TextVQA, STVQA) or very high density of small texts
(DocVQA, InfoVQA), results still highlight clear benefits when utilizing an external OCR model.

4.1.2 Multitask Fine-tuning

We simultaneously fine-tune and evaluate the pretrained checkpoints on multiple benchmarks belong-
ing to the same category. We deduplicated every training set over the test sets of every task in the
mixture to prevent the leakage of any test-set examples into the mixed training set. This is useful as it
leads to a single fine-tuned model that performs all the tasks, rather than having to fine-tune each task
separately. We performed such multitask fine-tuning on all Image Captioning benchmarks and most
VQA benchmarks, respectively.

Table 3 shows the multitask fine-tuning result for captioning tasks. The performance on COCO is
slightly decreased in the multitask setting, which is likely a result of this task needing longer training
to converge. For Screen2Words, having the smallest train and dev/test sets could be responsible for
the performance fluctuation. Notably, VizWiz-Cap and Widget-Cap shows improved performance
from multitask fine-tuning. Overall, the average performance decreases by 1.4 points (0.2 excluding
Screen2Words) with multitask fine-tuning, while offering the clear advantage of having a single
checkpoint to perform all these tasks. Appendix B shows similar results for VQA tasks. We consider
this outcome a positive result that establishes the on-par performance between multitask fine-tuning
and single-task fine-tuning for diverse benchmarks, in contrast with previous work which argued a
gap between single-task and multitask fine-tuning [19], or demonstrated little gap over benchmarks
from the same domain [20].

COCO NoCaps Text VizWiz Screen2 Widget Avg.
Method Caps Cap Words Cap

Split Karp.-test val val test-dev test test -

SOTA (Single-task FT) 149.1 127.0 148.6 119.4 109.4 136.7

PaLI-X Single-task FT 149.2 126.3 150.8 123.1 127.9 153.2 -
PaLI-X Multitask FT 147.3 125.6 154.6 124.2 120.6 153.7 -
Multitask (+/-) -1.9 -0.7 +3.8 +1.1 -7.3∗ +0.5 -1.4 (-0.2 w/o “*”)

Table 3: Scores from multitask fine-tuning compared with those from single-task fine-tuning for
Image Captioning. Validation or test-dev set numbers are reported for some tasks.

4.1.3 Few-shot Evaluation

We fine-tuned the PaLI-X model on a mixture of few-shot tasks. The few-shot mixture contains
Episodic mixtures, (Non-Episodic) Webli and (Non-Episodic) CC3M data. Note that all of these
datasets were already used in previous stages of training, but with lower mixture proportions. During

3As with all the other benchmarks, our training examples are carefully deduped to exclude images occurring
in these benchmarks, including AI2D. Such results, therefore, are not attributable to train-test data leakage.
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pre-training, we only use up to 4 shots, with both encoder and decoder shots (see Appendix B). For
fine-tuning, we use up to 8 encoder shots and do not use decoder shots.

We evaluate the few-shot performance on COCO caption (Karpathy test split [30]), and XM3600 [23]
datasets. For each task, we first create a “shots pool” with 256 examples that are randomly selected
from the task’s training set. As the XM3600 benchmark does not come with a training set, we use
Google Translate API to enhance the COCO Karpathy training set with captions in the 35 languages
represented in XM3600. Then, for each test data point, we randomly pick N shots from the pool as
the actual few-shot examples. Following [10], we also evaluate on 2 text-only shots settings where
only the textual part of 2 randomly sampled few-shot examples are used.

Table 4 reports the few-shot captioning performance on English and multilingual captioning, as
well as few-shot VQA performance on VQAv2. PaLI-X achieves SOTA few-shot results on COCO
with both 4 shots and 32 shots; it outperforms previous SOTA by +4.4 CIDEr points for 4-shot,
suggesting a strong ability to efficiently gather hints from few examples. We also report few-shot
CIDEr scores averaged over 35 languages using XM3600, demonstrating PaLI-X’s multilingual
capabilities. Meanwhile, although PaLI-X also performs decently on VQAv2, the gap behind the
SoTA Flamingo model [10] (which freezes the language backbone) may be the result of losing some
of the few-shot text-only QA capability by fine-tuning the language backbone, which supports the
hypothesis regarding the tension between few-shot and fine-tuning abilities.

COCO Captions XM3600 Cap. (35-lang avg.) VQAv2

Method 4 shots 32 shots 4 shots 32 shots 4 shots 32 shots

Prev. SoTA [10] 103.2 113.8 N/A (53.6 w/ fine-tune [5]) 63.1 67.6
PaLI-X 107.6 114.5 45.1 47.1 56.9 57.1

Table 4: Few-shot performance of the PaLI-X model (multilingual captioning for XM3600).

4.2 Video Captioning and Question Answering

We fine-tune and evaluate the PaLI-X model on 4 video captioning (MSR-VTT [55], VATEX [56],
ActivityNet Captions [57], Spoken Moments in Time [58]) and 3 video question answering bench-
marks (NExT-QA [59], MSR-VTT-QA [60], ActivityNet-QA [61]). A brief description of each
benchmark and clarifications on their usage are provided in Appendix C.

Experimental setup We fine-tune our model (with base resolution 224×224) for each task sepa-
rately, use the validation split for early stopping, and report performance on the test split. We use a
learning rate of 10−4 for all tasks, and do not adapt any hyperparameters for specific tasks. Frames
are sampled using a fixed temporal stride for each dataset (determined based on the video length
distribution in that dataset such that the product of the number of frames and stride is larger than the
total number of frames for half of the videos), and we experimented with including up to 8 or 16
frames per video. We did not include pooling over the spatial dimension; embeddings for 16×16
patches per frame are provided as visual input to the multimodal encoder.

Results We report CIDEr score for the video captioning tasks. Video QA tasks are treated as
open-ended generation tasks; we report full-string accuracy (for MSR-VTT-QA and ActivityNet-QA)
and WUPS metrics (NExT-QA) in [65, 59]. As shown in Table 5, the 16-frames version has an edge
over the 8-frame version, sometimes with a significant margin (e.g., close to a 6 point increase in
CIDEr score for ActivityNet-Captions). More importantly, while PaLI-X pretraining was dominated
by image-text tasks, we were able to achieve new SOTA performance for 5 out of 7 tasks4, and
performed very close to prior SOTA on MSR-VTT-QA (47.1 vs 47.4).

4.3 Image classification

To test image classification capabilities we fine-tuned PaLI-X and models from [5] on Ima-
geNet [66] and evaluated the resulting model on ImageNet-REAL [67] and out-of-distribution

4As noted in Table 5, current SOTA on NExT-QA for the open-ended QA task was achieved by Flamingo
32-shot, which had outperformed prior fine-tuning SOTA. To the best of our knowledge, PaLI-X performance
on this task does outperform existing published fine-tuning performances, with the caveat that we do not have
information on what Flamingo fine-tuning would have achieved on this task.
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MSR-VTT Activity-Net VATEX SMIT NExT-QA

Method Cap. [55] QA [60] Cap. [57] QA [61] Cap. [56] Cap. [58] QA [59]

Prior SOTA 75.9 47.4 52.5 44.7 94.0† 28.1‡ 33.5§

GIT2 [9] Flamingo [10] PDVC [62] VINDLU [63] GIT2 [9] MV-GPT [64] Flamingo 32shot [10]

PaLI-X (8fr) 74.6 46.9 49.0 48.4 66.0 42.5 37.0
PaLI-X (16fr) 76.8 47.1 54.9 49.4 69.3 43.5 38.3

Table 5: Results for Video Captioning and Video-QA using 8 frames (8fr) or 16 frames (16fr). †GIT2
uses Self-Critical Sequence Training to directly optimize the CIDEr metric for VATEX. ‡SMIT has
not been used for video captioning before, we apply MV-GPT [64] and report results on the test set.
§Numbers were obtained using 32-shot; since Flamingo 32-shot outperforms fine-tuning SOTA on
this open-ended QA task, they did not conduct further fine-tuning experiments for this task.

datasets: ImageNet-R [68], ImageNet-A [69], ImageNet-Sketch [70], ImageNet-v2 [71]. We used
the model from the first training stage (at resolution 224) and the one from the last training stage (at
resolution 756). We used the same training hyperparameters for all of runs (selected without any
hyperparameter tuning; mode details in Appendix D).

The results can be seen in Table 6. We compare the results to generative model with open vocab –
GIT2 [9] (using 384 image resolution), which is the current SOTA for full fine-tuning on ImageNet.
PaLI-X achieves SOTA results for generative models on Imagenet, and other datasets. We also
performed zero-shot evaluation for PaLI-X and the results can be found in Appendix D.

Model (resolution) INet [66] REAL [67] INet-R [68] INet-A [69] INet-Sketch [70] INet-v2 [71]

GIT2 [9] (384) 89.22 - - - - -
PaLI-17B [5] (224) 86.13 88.84 78.21 50.00 71.21 78.91

PaLI-X (224) 88.22 90.36 77.66 55.97 72.56 81.42
PaLI-X (756) 89.19 90.98 80.06 72.57 73.37 83.66

Table 6: Classification accuracy (top-1) fine-tuned on Imagenet [66].

prompt: detect knife and left half of watermelon and 
right half of watermelon and right hand and left 
hand
output: 298 284 722 493 left half of watermelon and 
298 483 721 681 right half of watermelon and 302 188 
779 260 knife and 202 265 535 493 left hand and 201 
485 546 723 right hand

right handleft hand

left half of 
watermelon

knife

right half of 
watermelon

prompt: detect window and cat and bike and door and tree and this is 
paradise
output: 259 487 423 550 window and 259 839 424 904 window and 706 625 
787 778 bike and 550 839 759 942 door and 256 363 424 430 window 
and 258 241 422 305 window and 254 715 422 774 window and 254 115 
422 177 window and 590 120 653 811 this is paradise and 549 131 588 
161 vent

this is paradise

bike

door

windowwindowwindowwindowwindowwindow

vent

prompt 1: detect bowls
output: 193 56 827 980 bowls
prompt 2: detect bowl
output: 213 55 594 431 bowl 
and 192 429 536 772 bowl and 
511 322 822 630 bowl and 467 
630 826 979 bowl

bowl bowl

bowl
bowl

prompt (KO): detect 랩탑 and 컵 and 고양이
ouputt: 489 447 779 679 고양이 and 676 659 
962 818 컵 and 349 0 964 478 랩탑
prompt (HI): detect लपैटॉप and कप and �बल्ली
output: 489 447 779 672 �बल्ली and 679 656 
965 822 कप and 352 0 966 479 लपैटॉप

 लपैटॉप

 �बल्ली

 कप

bowls

 랩탑

 고양이

 컵

Credits: Watermelon/Cat; Sarah Pflug (burst), Bowls; ariesandrea (flickr), Wall; Matthew Henry (burst)

Figure 2: Examples demonstrating multilingual, OCR and other capabilities transferred to detection.

4.4 Object Detection

Object detection can be easily formulated in our model as shown in pix2seq [72], The dataset mix
used for pre-training is presented in Sec. 3; detection data was included up to and including the stage
using resolution 672, after which a separate detection-specific model was fine-tuned on detection
data. Before detection-specific tuning, LVIS [73] & COCO labels were removed from all detection
training datasets, allowing zero-shot evaluation on LVIS.

Bounding box mean AP on LVIS is shown in Table 7, including zero-shot performance; the detection-
tuned model reaches an AP of 31 in general, and 31.4 on rare classes, and about 12 for both in
zero-shot. Performance on rare classes was on par with performance on common classes, a difficult
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feat traditionally accomplished by complicated sampling schedules and augmentations. In our set up,
it is directly enabled by PaLI-X’s diverse training mix. This could likely be further improved with
investment in fine-tuning e.g. using noise-augmentation methods from pix2seq [72], or a further stage
of high-resolution, LVIS only training. Qualitatively, we observe emergence of many interesting
phenomena enabled by co-training with non-detection tasks; for example, multilingual detection,
OCR bounding boxes and longer descriptions, none of which are included in detection training, are
often handled well by PaLI-X. Additional results and information can be found in Appendix E.3.

LVIS AP LVIS APRare

ViLD [74] (tuned on non-rare LVIS) 29.3 26.3
Region-CLIP [75] (tuned on non-rare LVIS) 32.3 22.0
OwLViT-L/16 [28] (tuned on non-rare LVIS) 34.7 25.6
OwLViT-L/16 [28] (with Object365 and VG datasets) 34.6 31.2

PaLI-X (Zeroshot) 12.36 12.16
PaLI-X (Detection-tuned) 30.64 31.42

Table 7: PaLI-X object detection results on LVIS. The diverse pre-training mix enables parity
performance between LVIS rare and common classes. Other related approaches are shown for context,
but are not directly comparable.

5 Model Fairness, Biases, and Other Potential Issues

Large models, if left unchecked, have the potential to inflict harm on society – such as amplifying
biases [76, 77, 78, 79], causing disparities [78, 80, 81], or encoding narrow cultural perspectives
[82, 83]. Hence, evaluating PaLI-X for such potential issues is important. We focus our RAI
evaluation on three parts: (1) harmful associations, such as toxicity and profanity, (2) demographic
parity in the model’s output, such as encoding societal stereotypes/biases, and (3) performance
disparity across subgroups. This breakdown follows earlier works in the literature, such as [84].

Toxicity / profanity. We estimate the level of toxicity and profanity in the generated captions,
including when disaggregated across subgroups. We use the FairFace dataset [85] that comprises of
images of people with ground-truth attributes: gender presentation, age and ethnicity. We generate
captions and use the Perspective API [86] (threshold > 0.8) to measure toxicity and profanity. Table
8 summarizes the results; we observe a low level of toxicity/profanity across all slices. Tables 9 and
10 provide a detailed breakdown of toxicity/profanity results for all subgroups in FairFace dataset.
In Tables 11 and 12, we report similar results in the MIAP [87] dataset, disaggregated by perceived
gender and age.

Gender Ethnicity Age
Lowest Highest Lowest Median Highest Lowest Median Highest Overall

Toxicity 0.14% 0.19% 0.00% 0.13% 0.39% 0.00% 0.17% 0.31% 0.01%
Profanity 0.00% 0.02% 0.00% 0.00% 0.05% 0.00% 0.00% 0.03% 0.00%

Table 8: Average toxicity/profanity in the captions generated by PaLI-X on FairFace dataset.

Bias / Demographic Parity. We estimate the level of demographic parity (DP) [88] in PaLI-X
with respect to gender and occupation. To estimate the level of demographic parity (DP) in the
model’s output, we feed an image into PaLI-X with the chosen occupation title as a prefix and
record the average log-perplexity score of the captions generated by the model. To ensure that any
observed parity would likely reflect unintended biases in the model itself as opposed to the evaluation
dataset, we use CelebA [89] that contains celebrity images with gender presentation annotation. Our
assumption is that many occupations reflecting societal stereotypes, such as secretaries and plumbers,
are quite rare in the CelebA dataset so disparities in output may reflect what is encoded in the model
itself. The list of occupations is compiled based on [90] and the US job statistics report in [91].

Figure 3 (TOP) summarizes the overall results. First, PaLI-X tends to assign a higher log-perplexity
score to women than men across most occupations; i.e. men are predicted to be more likely to hold
such occupations. Second, PaLI-X assigns a higher likelihood for a woman to be (‘secretary’ &
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Ethnicity Toxicity Profanity

< 0.2 0.2− 0.8 > 0.8 < 0.2 0.2− 0.8 > 0.8

Middle Eastern 64.24% 35.76% 0.00% 94.87% 5.13% 0.00%
Black 59.47% 40.40% 0.13% 92.67% 7.33% 0.00%
Indian 63.86% 36.07% 0.07% 94.39% 5.61% 0.00%
Hispanic 61.09% 38.79% 0.12% 94.45% 5.55% 0.00%
White 62.45% 37.16% 0.39% 92.85% 7.10% 0.05%
Southeast Asian 63.18% 36.61% 0.21% 93.57% 6.43% 0.00%
East Asian 63.15% 36.72% 0.13% 91.55% 8.45% 0.00%

Table 9: Distribution of the predicted toxicity/profanity for the captions generated by PaLI-X on
FairFace dataset disaggregated by ethnicity.

Age Toxicity Profanity

< 0.2 0.2− 0.8 > 0.8 < 0.2 0.2− 0.8 > 0.8

< 19 58.78% 40.00% 0.22% 89.71% 10.29% 0.00%
20 - 29 63.01% 36.86% 0.12% 93.24% 6.73% 0.03%
30 - 39 63.13% 36.70% 0.17% 95.41% 4.59% 0.00%
40 - 49 63.62% 36.31% 0.07% 95.27% 4.73% 0.00%
50 - 59 65.87% 33.88% 0.25% 96.48% 3.52% 0.00%
60 - 69 65.31% 34.38% 0.31% 95.95% 4.05% 0.00%
> 70 66.10% 33.90% 0.00% 92.37% 7.63% 0.00%

Table 10: Distribution of the predicted toxicity/profanity for the captions generated by PaLI-X on
FairFace dataset disaggregated by age.

Perceived Gender Toxicity Profanity

< 0.2 0.2− 0.8 > 0.8 < 0.2 0.2− 0.8 > 0.8

Predominantly Feminine 53.98% 45.93% 0.09% 90.55% 9.39% 0.07%
Predominantly Masculine 70.76% 29.17% 0.06% 94.97% 5.01% 0.01%

Table 11: Distribution of the predicted toxicity/profanity for the captions generated by PaLI-X on
MIAP dataset disaggregated by perceived gender.

Age Bucket Toxicity Profanity

< 0.2 0.2− 0.8 > 0.8 < 0.2 0.2− 0.8 > 0.8

0-2 yrs 28.00% 72.00% 0.00% 69.90% 30.10% 0.00%
3-19 yrs 49.96% 49.96% 0.07% 91.46% 8.54% 0.00%
20-59 yrs 66.27% 33.68% 0.05% 93.42% 6.55% 0.03%
> 60 yrs 65.46% 34.54% 0.00% 96.39% 3.61% 0.00%

Table 12: Distribution of the predicted toxicity/profanity for the captions generated by PaLI-X on
MIAP dataset disaggregated by age bucket.

‘actor’) and a higher likelihood for a man to be (‘guard’ & ‘plumber’) at the 95% confidence level.
Figure 3 (BOTTOM) displays the corresponding correlations between perceived gender presentation
and occupations within the WebLI dataset, where we use the Pearson correlation coefficient by
treating each label as a binary random variable and noting that for binary random variables, zero
correlation implies full independence. All absolute correlation coefficients in the data are < 0.2 with
99% of them being < 0.1.

Performance Disparity. We present here an evaluation of how well PaLI-X performs across
different subgroups using the MIAP [87] dataset. For images containing exactly a single individual,
we query PaLI-X with the question: “Is there a person in this image?” and evaluate the accuracy of
its response. Note that there are no false positives in this evaluation. Table 13 summarizes the results.
We observe that PaLI-X maintains a high accuracy across all subgroups.
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Figure 3: TOP: Level of demographic parity (DP) in PaLI-X’s output for CelebA images between
women and men. Values close to zero indicate absence of bias. BOTTOM: Absolute Pearson
correlation coefficients between gender presentation and occupations in WebLI.

Skin Tone 1 [2] 2 [871] 3 [3008] 4 [522] 5 [184] 6 [85] 7 [54] 8 [49] 9 [6] 10 [1]

0.00% 0.11% 0.47% 1.53% 0.54% 1.18% 0.00% 0.00% 0.00% 0.00%

Gender Predominantly Feminine [2437] Predominantly Masculine [3544]

0.53% 0.85%

Age Bucket 0-2 yrs [17] 3-19 yrs [568] 20-59 yrs [4925] > 60 yrs [247]

0.00% 0.00% 0.77% 0.81%

Table 13: Detection error rate for “person” in PaLI-X using the subset of the MIAP dataset [87]
that contain exactly a single individual in the image. PaLI-X maintains a low error rate across all
subgroups. Skin tone follows the Monk Skin Tone Scale [92]. Numbers inside square brackets
correspond to the size of each bucket.

Limitations. The analysis carried out in this section is necessarily limited, since fairness is a
societal concept that cannot be reduced to statistical metrics. We expect RAI evaluations to evolve
over time as new issues are detected and reported in the literature and additional datasets become
available. Statistical analysis is only a single step and does not substitute for studying the broad and
delayed impact of deployed models.

In addition, we rely in some parts on automated tools for inferring attributes, which are not perfectly
accurate and can lead to a broad categorization of people that misidentifies real identities. We do not
support the creation or application of classifiers for sensitive attributes, such as gender or ethnicity,
based on visual indicators and encourage readers to delve into the comprehensive work outlining their
potential risks, such as [93, 94], for further insight. Also, while we use perceived gender presentation
in our analysis that is provided by the data (i.e. in CelebA and FairFace), we acknowledge that people
may express their gendered identities in numerous other ways.

In our evaluation, toxicity is predicted based on the generated captions only. However, without
knowing the context of the image, this can introduce false positives.

6 Conclusions

In this work we draw more insights from further scaling vision and language models. We show that
the scaling and the improved training recipe results in a model that substantially outperforms previous
state-of-the-art models, leads to emergent behaviors and identifies further margins for improvements.
In particular, we report that the model achieves significant improvements at document, chart, and
infographic understanding, captioning, visual question answering, counting, and performs well on
few-shot (in-context) captioning, video captioning and question-answering, and object detection.
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A Additional Model Details and Examples

A.1 PaLI-X Architecture Illustration

Figure 4: Visual input for videos: each frame is independently processed by ViT; patch embeddings
are flattened and concatenated together to form the visual representation. (The example input image
is in the public domain).

A.2 Tuning ViT-22B for better OCR capabilities

The vision encoder’s ability to understand text is crucial to several downstream tasks and general
usability. JFT-based pre-training is insufficient to cover this, and so we tuned ViT-22B on WebLI-
OCR data. In order to stay true to the original discriminative classification-based objective used for
ViT-22B, we turn OCR into a bag-of-words prediction task. OCR texts are tokenized using the mT5
tokenizer [95] across all languages, and the model is trained to predict whether or not a given token
occurs in an image. This is treated as multilabel classification, with an expanded classification head.

In the ablation study shown in Table 22, we confirm that this this extra tuning step indeed has a
significant improvement on Scene-Text understanding capabilities, demonstrated by the performance
on ST-VQA and TextVQA. Meanwhile, the performance on regular VQA tasks such as those in the
VQAv2 benchmark also improves.

A.3 Illustrative PaLI-X Examples

Table 14 shows representative examples of PaLI-X, illustrating improved abilities related to counting
(both of the simple and complex variety), in context text-reading capabilities, and spatial awareness.

13

https://commons.wikimedia.org/wiki/File:Charadehepburn.jpg


Image Credit: Wikimedia Commons [CC BY-SA 4.0]

Q: how many coins are there?
A: 12

Q: how many one-dollar coins are there?
A: 2

Image Credit: ChrisGoldNY (flickr) [CC BY-NC 2.0]

Q: what is written inside the box?
A: dr. strangelove’s secret uses of uranus

Q: what is written on the top-left corner of the page?
A: the bomb and dr. strangelove

Q: what is written on the top-right corner of the page?
A: doctor doomsday

Public Domain Image

Captioning:
a movie poster for rebecca starring laurence olivier and joan fontaine.

Q: who directed this movie?
A: alfred hitchcock

Q: who produced this movie?
A: david o. seznick

Table 14: Examples of counting, text reading capabilities with context and spatial awareness. Results
are generated by the multi-task-finetuned models using the model’s inherent OCR capabilities (i.e.,
without the use of an external OCR system).

B Additional results: Image Captioning and VQA

B.1 Information of Downstream Image Benchmarks

Table 15 summarizes the Image Captioning and VQA benchmarks. For benchmarks modeled only end-
to-end without OCR pipeline input (Table 1 and Table 16), fine-tuning is performed with resolution
672×672. For Scene-Text and Document Understanding tasks presented in Table 2, fine-tuning is
performed with resolution 756×756.

B.2 Extended Tables of Image Benchmarks

An extended table of results on some Image Benchmarks is shown as Table 16.
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Benchmark Visual Domain Description Metric

COCO Captions

Natural Images

Captioning of natural images CIDEr
NoCaps Captioning of natural images CIDEr
TextCaps Captioning of natural images containing text CIDEr
VizWiz-Cap Captioning of photos taken by people who are blind CIDEr
VQAv2 VQA on natural images VQA accu.
OKVQA VQA on natural images requiring outside knowledge VQA accu.
TextVQA VQA on natural images containing text VQA accu.
VizWiz-QA VQA on photos taken by people who are blind VQA accu.
ST-VQA VQA on natural images containing text ANLS
TallyQA VQA with counting questions EM
OVEN VQA on natural images for visual entity recognition EM
InfoSeek VQA on natural images for visual info-seeking questions Relaxed EM

OCR-VQA
Illustrations

VQA on images of book covers EM
ChartQA VQA on images of charts RA
AI2D VQA on images of scientific diagrams EM

DocVQA Documents VQA on images of scanned documents ANLS
InfographicsVQA VQA on images of infographics ANLS

Screen2Words UIs Captioning a UI screen to describe functionality CIDEr
Widget Captioning Captioning a UI component on a screen CIDEr

Table 15: Summary of Image Captioning and VQA benchmarks used for evaluating PaLI-X

COCO NoCaps VQAv2 OKVQA TallyQA

Model Karp.-test val test test-dev test-std val simple complex

SimVLM 143.3 112.2 110.3 80.03 80.34 - - -
CoCa (2.1B) 143.6 122.4 120.6 82.3 82.3 - - -
GIT (0.7B) 144.8 125.5 123.4 78.56 78.81 - - -
GIT2 (5.1B) 145.0 126.9 124.8 81.74 81.92 - - -
OFA (0.9B) 145.3 - - 82.0 82.0 - - -
Flamingo (80B) 138.1 - - 82.0 82.1 57.8∗ - -
BEiT-3 (1.9B) 147.6 - - 84.2 84.0 - - -
PaLM-E (562B) 138.7 - - 80.0 - 66.1 - -
MoVie - - - 69.26 - - 74.9 56.8
PaLI (17B) 149.1 127.0 124.4 84.3 84.3 64.5 81.7 70.9

PaLI-X (55B) 149.2 126.3 124.3 86.0 86.1 66.1 86.0 75.6

Table 16: Results on COCO Captions (Karpathy split), NoCaps, VQAv2, OKVQA, and TallyQA with
end-to-end modeling without OCR pipeline input. The “simple” and “complex” are test subsplits.

B.3 Multi-lingual Captioning

Multilingual captioning on XM-3600 The Crossmodal-3600 (XM3600) benchmark contains a
geo-diverse set of 3600 images with human-annotated reference captions in 36 languages [23]. Table
17 presents multilingual results for both PaLI (current SoTA on XM-3600) and PaLI-X, both finetuned
with 224×224 resolution. Overall, PaLI-X improves on the SoTA performance across 5 of the 7
languages we report here (and for 14 of the total 35 languages considered); notably, the performance
on English is 4 CIDEr points lower compared to PaLI. The 35-language average CIDEr score is in
the same ballpark between PaLI and PaLI-X, with a slight +0.5 advantage for PaLI.

Model en fr hi iw ro th zh 35-lang avg.

PaLI 98.1 75.5 31.3 46.8 35.8 72.1 36.5 53.6
PaLI-X 94.2 78.7 32.0 46.9 36.9 75.3 36.1 53.1

Table 17: CIDEr scores on image captioning for the Crossmodal-3600 benchmark for seven diverse
languages (English, French, Hindi, Hebrew, Romanian, Thai, and Chinese), as well as the average of
the 35 languages covered by the benchmark. Both models are finetuned with 224×224 resolution.
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B.4 TallyQA and the emergence of complex counting capability

We present in Table 18 the performance of similar models across a wide range of capacity – from
700M parameters to 55B parameters for PaLI-X. The graphs in Fig. 5 illustrate how simple counting
appears to follow a more linear progression as parameter-size increases, while complex counting
appears to show emergence somewhere before the datapoint provided by the performance of PaLI
17B. This corresponds to our intution that complex counting is a true multimodal task that requires
additional capabilities from a model, in terms of the alignment that is required between the visual
information and the prompt specification.

Model TallyQA simple TallyQA complex Weighted average

PaLI (700M) 66.9 55.6 62.4
PaLI (3B) 72.0 56.7 65.9
PaLI (17B) 76.2 65.5 71.9
PaLI-X (55B) 81.3 71.0 77.2

Table 18: Performance on TallyQA splits for simple and complex questions. All models use 224×224
image resolution.

Size (B)
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50
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70

80

90

1 5 10 50

TallyQA simple TallyQA complex

Figure 5: Performance on TallyQA splits for simple and complex using PaLI variants and PaLI-X.
All models use 224×224 image resolution. The emergent behavior on complex counting beyond the
3B size is made clear with PaLI-X.

B.5 Details on Few-shot Modeling

B.5.1 Few-shot Formulation

Figure 6 illustrates the network flow of a few shot model. The text and prompt part of each shot
is embedded and concatenated as text features for the PaLI-X model. Each shot’s images and the
target image are independently encoded by the ViT component, and the ViT features are concatenated
along the sequence axis as visual features. Conditioned on that sequence, the PaLI-X decoder
autoregressively makes the predictions for the target image.

Encoder shot and Decoder shots While images for all few-shot examples and target example are
given as input to the model, text information can be provided in different ways. During inference
time, all text information related to the few-shot examples is given to the encoder; in the case of a
Multi-answer VQA task, for example, this includes both the prompts that contain the questions, and
the expected answers. Prompt for the target example is also given to the encoder, and the decoder is
tasked with generating an answer for the target example. During training, however, we increase the
training efficiency by making the model predict answers for both the target example and selected
shots (the decoder shots). That is, we partition the N shots in two sets: encoder shots (Ne > 0) and
decoder shots (Nd ≥ 0), such that Ne +Nd ≤ N . We use up to 4 shots in total during pre-training
(i.e. N = 4 ), and sample Ne uniformly at random from 1 to N . Text input for encoder shots contain
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Shot 2 Image
Shot 1 Image

PaLI
Decoder
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Decoder
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Figure 6: A detailed view on how the few-shot exemplars are fed to the model components.

both prompts and answers. The decoder shots, however, act as if they were target examples: their
text input to the encoder contains only the prompt, and the decoder needs to predict answers for the
decoder shots in addition to the target example.

Text Tokens Image Tokens

Decoder Cross Attention Mask

Decoder
Tokens

Encoder Tokens

  N   N

Target Target All Shots 

* *

All Shots 

Figure 7: Re-weighted attention with few-shots.

Attention re-weighting Increasing the num-
ber of shots turned out to be challenging, poten-
tially due to cross-attention to target example
input tokens getting diluted by the large num-
ber of shots. To address this, we introduce an
attention re-weighting mechanism. As shown
in Figure 7, we explicitly boost the weights for
cross attention between decoder tokens and en-
coded tokens from the target example (that is,
the target image and the target text prompt).

Specifically, if there are N shots in total, when
decoding each token we multiply the cross at-
tention weights by N for the target image and
text tokens from the encoder outputs. We ob-
serve this attention re-weighting technique is
especially helpful when we provide the model
with many shots (e.g. 32 shots). [96] introduces
a technique along similar lines to manipulate attention weights when gathering them from different
threads of encoded shots at inference time.

B.5.2 Additional Few-shot Results

Multilingual captioning results Table 19 reports the CIDEr scores for 7 languages and an average
over 35 languages to demonstrate PaLI’s multilingual captioning capabilities on the XM3600 bench-
mark in teh few-shot setting. The pre-trained model (no few-shot finetuning) achieves an average
score of 22.7. The PaLI-X model achieves an average score of 45.1 for 4 shots and 47.1 for 32 shots.
Note that the 32-shot PaLI-X average CIDEr score is only 6 points behind the fully finetuned model,
which uses roughly 600k training examples per language (while the few-shot approach does not
update the model parameters).

Qualitative results Figure 8 shows 3 examples on few-shot captioning and VQA tasks for qual-
itative analysis. The first row shows captions for the images using the images’ original language,

5Equivalent with the Flamingo “0-shot” setting.
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The current population of 
Australia is 26 million people.

Deutschland hat 83 Millionen 
Einwohner.

Argentina tiene 46 millones 
de habitantes.

la population 
actuelle de la 
france est de 67 
millions d’ 
habitants

Input few shot examples + target image

Home to the best burgers 
and fried chicken.

Home to unbeatable fish 
and chips.

Home to outstanding 
ramen. 

Home to the best 
pizza in the world

Output

Q: Is this a new technology? 
A: Yes, the typewriter is 
invented in 19 Century, fairly 
new.

Q: Is this a new technology? 
A: No, the compass is 
invented 2,000 years ago, 
pretty old.

Q: Is this a new technology?
A: Hard to tell, the Newtonian 
telescope is invented around 17 
century.

Q: Is this a new technology?
 A:

yes the personal 
computer is 
invented in 1970s 
fairly new

Public Domain Image Wikimedia Commons [CC BY-SA 3.0] Wikimedia Commons [CC BY-SA 2.0] Wikimedia Commons [CC 
BY-SA 3.0]

Tim Klapdor (flickr) [CC BY-NC 2.0] Wikimedia Commons [CC BY-SA 4.0] Pelican (flickr) [CC BY-SA 2.0] Wikimedia Commons [CC BY-SA 2.5]

Wikimedia Commons [CC BY-SA 3.0] Wikimedia Commons [CC BY-SA 3.0] Wikimedia Commons [CC BY-SA 2.0] Gautier Poupeau (flickr) [CC BY 2.0]

Figure 8: Qualitative Results on few-shot captioning (first two rows) and VQA (the last row) tasks.

Crossmodal-3600 Captioning
en fr hi iw ro th zh 35-lang avg.

PaLI-X 0-shot 48.8 25.0 10.5 20.1 13.0 33.3 18.4 22.7
PaLI-X (2 text-only shots5) 54.5 46.7 12.0 22.2 9.4 40.3 23.7 25.8
PaLI-X 4 shots 77.8 62.5 22.2 38.7 30.2 56.0 27.7 45.1
PaLI-X 32 shots 81.4 66.1 25.6 40.6 32.4 59.4 29.7 47.1
PaLI-X (finetuned) 94.2 78.7 32.0 46.9 36.9 75.3 36.1 53.1

Table 19: Few-shot performance of the PaLI-X model on multilingual captioning tasks.

demonstrating the cross multilingual transfer of the few-shot capability. The second row captions the
images with a country’s popular food, showing that the few-shot approach can access the model’s
world knowledge. The last row shows a VQA with an explanation-like scenario where we ask if
the technologies in the images are “new”. Generally speaking, the shown personal computer was
produced more than 40 years ago and could be regarded as old technology considering the fast pace
of the current high-tech development. However, the 3 input shots provide the detailed calibration for
the concept of “new” and the few-shot model successfully take the context and output “new” with
plausible explanation to the very old PC.

B.5.3 Few-shot ablation results

In this section, we present and discuss some ablation results for few-shot we explored in order to
inform our final design choices on PaLI-X. Unless otherwise specified, we use a 700M-parameter
model with the same encoder-decoder architecture, consisting of a ViT-B/16 vision encoder and a
mT5-base encoder-decoder language model.

Pooling vs not pooling image tokens To mitigate the computational burden that arises with many
shots, we can pool (for example, average) the per-image tokens before concatenating all input tokens.
This pooled image tokens model achieved a CIDEr score of 56.3 for 4-shots COCO captioning, which
is substantially lower than the full model’s CIDEr score of 61.7. This highlights the importance of
keeping all the tokens coming out of the ViT encoder, despite the computational overhead.

Limited-range Encoding Attention. We explore per-example image-text attention, as proposed
and applied in [10]. Under this approach, the image query tokens for each example can only attend
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to its corresponding text tokens, while the text query tokens can attend to all tokens. By using this
per-example attention model, we achieved a CIDEr score of 59.6, which is 2.1 points lower than the
full attention model’s CIDEr score of 61.7 for 4-shots COCO captioning.

Attention re-weighting for large number of shots. We report the few-shot results on COCO
captioning from early-stopped PaLI-2 3B models; in this case, we did not apply normalized attention
in training. We provide the test results with and without attention re-weighting during inference
for a different number of encoder shots. Attention re-weighting achieves increasing CIDEr scores
of 82.1, 84.3 and 84.5 with 4, 8 and 16 shots respectively. On the other hand, the model achieves
83.4, 76.5 and 66.3 without attention re-weighting. The decreasing performance may suggest that the
model fails to locate the target image and text prompt among the large number of shots, whereas the
attention re-weighting helps the model to focus on the target features. Accordingly, we decided to
include attention re-weighting during finetuning for PaLI-X.

Distributing shots between encoder and decoder. We explore the use of both encoder and decoder
shots during pre-training. We pretrain the PaLI-2 700M model on PaLI-2 mixtures with varying
number of encoder shots (between 1 and 4). The remaining shots (up to exactly 4) are used as decoder
shots. Using only encoder shots leads to a 64.0 CIDEr score for 4 shots in COCO captioning. The
best mix of encoder and decoder shots achieves a CIDEr score of 65.2. This suggests splitting shots
leads to a more challenging pre-train task that helps the model learn more efficiently.

B.6 Finetuning hyperparameters

The hyperparamter choices for downstream finetuning experiments are summarized in Table 20. As
mentioned in the Main Text, for all of the downstream finetuning experiments, we used a reduced set
of hyperparameters, without heavy per-task optimization.

Benchmark learning rate schedule Steps before LR decay to 0 batch size

COCO

linear decay from 1e-4

10k 256
VQAv2 20k 256
OCRVQA 20k 256
Multitask-VQA 20k 256
Multitask-Captioning 20k 256
All other 5k 128

Table 20: Hyperparameter used for finetuning PaLI-X.

B.7 Multi-task finetuning

We deduplicated every training set mixture over the test sets of every task in order to prevent leakage
of any test-set examples into the training set. The mixture is formed by putting the training examples
of each subtask together, with heuristic adjustments for a better balance. Following the resolutions
for the single-task finetuning, the multi-task captioning and VQA finetuning are done with 672 and
756 image resolutions, respectively. The multitask finetuning covers just about 5M examples, which
is 20k steps with a batch size of 256. For scene-text and document understanding tasks, the multi-task
finetuning uses the end-to-end setting without OCR pipeline input.

The following aspects made multitask finetuning particularly challenging: (i) all tasks used the same
prompt without task-specific indicators; the model is thus required to adapt to the style of multiple
benchmarks simultaneously. 2) We do not perform per-task validation set optimization. All subtasks
are evaluated using the same checkpoint, but tasks converge to their optimal value at a different pace.

B.8 Ablation studies

We first show in Table 22 the advantage brought by the OCR co-training stage of ViT-22B. We pair
the vanilla ViT-22B and the ViT-22B with additional OCR co-training with a small language model
mT5-base and pretrain these models on 40M of WebLI-OCR data with the splitOCR objective, before
finetuning on ST-VQA. Co-training on image and OCR classification has a significant advantage on
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VQA OK Text VizWiz ST OCR Info Doc Chart Avg.Model v2 VQA VQA VQA VQA VQA VQA VQA QA

Split test-dev val val test-dev val test test test test -

Previous Multi-task SOTA 84.3 64.5 68.4 71.6 75.1 71.3 40.0 76.6 70.5 -

Single-task FT 86.0 66.1 71.9 72.6 80.2 75.9 49.2 80.0 70.9 -
Multi-task FT 84.3 63.5 71.4 71.4 79.0 73.4 50.7 80.9 70.6 -
Multi-task (+/-) -1.7 -2.6 -0.5 -1.2 -1.2 -2.4 +1.5 +0.9 -0.3 -0.8

Table 21: Scores from multi-task finetuning compared with those from single-task finetuning for
VQA. Validation or test-dev set numbers are reported for some tasks.

ST-VQA and TextVQA. In the meantime, the performance on VQAv2, which is not very scene-text
heavy, is improved as well. Moreover, we found that making the top left patch white, which helped
the co-training of image classification and ocr classification on ViT-22B, is not required for the
subsequent training of PaLI-X.

For ablation of the PaLI-X training procedure, we used a 5B model with UL2-3B and ViT-G with 2B
parameters, which is roughly a 10:1 down-scale of the PaLI-X 55B model.

Model OCR-task Indicator ST-VQA TextVQA VQAv2 3-task avg.

mT5-base + Vanilla ViT-22B No 42.6 36.1 68.9 49.2

mT5-base + ViT-22B-OCR No 47.0 38.9 69.8 51.9
mT5-base + ViT-22B-OCR Yes 46.2 39.4 70.2 51.9

Table 22: Advantage of the OCR co-training stage of ViT-22B. Pretraining is performed with
resolution 224×224 and finetuning is with 448×448. Numbers reported are on validation split.

For stage 1 training, we show in Table 23 that adding image token generation does not harm the
performance on the main image+language understanding tasks.

Mixture COCO VQAv2

without ViT-VQGAN 139.3 77.3
with 10% ViT-VQGAN 139.7 77.1

Table 23: Ablation experiment showing adding ViT-VQGAN tokens does not harm understanding
performance (captioning and VQA tasks).
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C Additional results: Video Captioning and QA

Below we give a brief description of each video data set we used for evaluation. Note that we freshly
collected the data when performing the experiments, which led to different effective numbers of
videos in different splits in some cases, see Table 24.

These descriptions refer to the original dataset size, but we train on (sometimes significantly) fewer
videos — the exact numbers are given in Table 24. This is because not all videos in the datasets were
available online at the time of writing (e.g., due to user deletion).

C.1 Datasets & Benchmarks

MSR-VTT [55]: This dataset consists of 10K open domain video clips for video captioning, with 20
captions each. The duration of each video clip is between 10 and 30 seconds. We follow the standard
splits proposed by [55] and report results on the test set.

VATEX [56]: VATEX includes captions for 41K videos sampled from the Kinetics-600 dataset, with
10 English captions each. We report results on the English public test set.

ActivityNet Captions [57]: This dataset consists of 100K temporally localized sentences for 20k
videos. We follow the standard split containing 50/25/25% of the dataset for training, validation and
testing, and use ground truth temporal proposals at evaluation following [57]. Note that following
other works [62], we use the val_1 split for validation and val_2 split for testing.

Spoken Moments in Time (SMIT) [58]: This dataset consists of long captions obtained via audio
recordings for 500k short video clips. While this dataset has been traditionally only used for text
to video retrieval, we find that it is a strong benchmark for captioning as it is the largest manually
annotated set of videos with text captions.

ActivityNet-QA [61]: The dataset contains 58,000 question-answer pairs for videos in the ActivityNet
dataset [97]. We report accuracy (using exact string match) on the test split. Note that we do open-
ended generation for all VideoQA datasets.

MSR-VTT-QA [60]: This dataset was created using a semi-automatic pipeline on top of the MSR-
VTT dataset. We report accuracy (using exact string match) on the test split.

NExT-QA [59]: We focus on the Open-Ended QA task, which consists of 52,044 question-answer
pairs for a total of 5,440 videos (sampled from the VidOr dataset[98]). Exactly following Next-
QA [59] and Flamingo [10], we report the Wu-Palmer Similarity (WUPS) on the test set.

MSR-VTT VATEX ANet-Cap SMIT M-V-QA ANet-QA NExT-QA

train 6513 25991 37421 481094 158581 32000 37523
Original size valid. 497 3000 17505 14604 12278 18000 5343

test 2990 6000 17031 3513 72821 8000 9178

train 4768 22902 30982 481094 116943 28020 37523
Dataset size valid. 327 2657 14604 8096 8215 15890 5343

test 2144 5276 14234 3513 53014 7050 9178

train 73.21 88.12 82.79 100.00 73.74 87.56 100.00
% Remaining valid. 65.79 88.57 83.43 100.00 66.91 88.28 100.00

test 71.71 87.93 83.58 100.00 72.80 88.13 100.00

Table 24: We freshly collect the data sets from the respective data sources. In cases where there are
multiple question-answer pairs per video we report the number of question-answer pairs. Similarly,
for ActivityNet Captions we report the number of captions. Due to missing videos which were
removed after the original data sets were defined, most of our data sets are missing 10% of the videos
or more.
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D Additional results: Image Classification

Setup for zero-shot and finetuning evaluation The setup used for the experiments here uses the
PaLI-X model to generate directly the (English) class name using the captioning prompt. The output
is considered correct if it matches exactly the class name (apart from ImageNet-REAL, where we
check if the class corresponding to the output is in the set of correct labels).

Zero-shot Evaluation results We use the same scoring technique as in PaLI [5] to evaluate PaLI-X
in zero-shot setting (without training on any Imagenet data). We use the PaLI-X model obtained after
the first stage of training (using the base 224 image resolution).

The results are presented in Table 25. We compare the results to PaLI [5] - previous zero-shot genera-
tive SOTA, and Flamingo [10] - another generative model of similar architecture with comparable
1-shot and 5-shot results. Overall, we report that the results between PaLI and PaLI-X for 0-shot are
similar.

Model (ImageNet data) INet REAL INet-R INet-A INet-Sketch INet-v2 ObjNet

Flamingo-80B (1-shot) 71.9 - - - - - -
Flamingo-80B (5-shot) 77.3 - - - - - -
PaLI (17B) (0-shot) 72.11 76.43 81.97 44.70 63.83 64.46 42.62

PaLI-X (0-shot) 71.16 75.75 82.96 46.13 61.58 63.91 44.58

Table 25: Top 1 accuracy results of 0-shot image classification on ImageNet [66],
ImageNet-REAL [67], ImageNet-R [68], ImageNet-A [69], ImageNet-Sketch [70],
Imagenet-v2 [71] and ObjectNet [99].

Finetuning To test image classification capabilities, we finetune PaLI-X on ImageNet [66] and eval-
uate the resulting model on ImageNet-REAL [67] and out-of-distribution datasets: ImageNet-R [68],
ImageNet-A [69], ImageNet-Sketch [70], ImageNet-v2 [71].

We use the model from the first training stage (at resolution 224) and the one from the last training
stage (at resolution 756). We use the same training hyperparameters for all of runs (selected without
any hyperparameter tuning).

The results can be seen in Table 26. We compare the results to generative model with open vocab –
GiT2 [9] (using 384 image resolution), which is the current SOTA for full-finetuning on ImageNet.
PaLI-X achieves close to SOTA results for generative models on Imagenet, and other datasets.

Model (resolution) INet REAL INet-R INet-A INet-Sketch INet-v2

GIT2 (384) 89.22 - - - - -
PaLI 3B (224) 85.11 88.71 81.11 45.71 70.00 78.23
PaLI 17B (224) 86.13 88.84 78.21 50.00 71.21 78.91

PaLI-X (224) 88.22 90.36 77.66 55.97 72.56 81.42
PaLI-X (756) 88.82 90.80 79.97 73.47 73.39 83.48
PaLI-X † (756) 89.19 90.98 80.06 72.57 73.37 83.66

Table 26: Classification (top-1) accuracy with Imagenet [66] fine-tuning on: Ima-
geNet, ImageNet-REAL [67], ImageNet-R [68], ImageNet-A [69], ImageNet-Sketch [70],
Imagenet-v2 [71] (resolution in parentheses). PaLI-X † fine-tuned for 2.2x more steps.
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E Object Detection

E.1 Object detection as a VLM task

Object detection is framed similarly to Pix2seq [72], with two key differences: the use of a natural
language vocabulary, and class-conditioning. Prompt classes are fed to PaLI-X’s text encoder, in the
format detect class1 and class2 and class3. The model is trained to only output bounding
boxes corresponding to classes in this prompt. We represent bounding boxes as coordinates in the
same style as pix2seq [72]; that is, 4 integers ymin xmin ymax xmax ranging from 0 to 999. Figure 9
shows an example input.

encoder input: detect giraffe and 
car and mask and coffee maker and 
wheel
input image:

decoder output: 222 35 731 978 car 
and 540 419 731 548 wheel and 409 
85 571 194 wheel

global negative (from visual genome)

negative

positive

corresponds to:

Image credits: Matthew Henry, burst, https://burst.shopify.com/photos/vintage-red-porsche

Figure 9: An example training pair, consisting of the text prompt, the image and the expected
output. The prompt consists of multiple classes; we show a hypothetical Open Images V4 example,
with positives ‘car’ and ‘wheel’, negative ‘giraffe‘ and global negatives ‘mask’ and ‘coffee maker’
(sampled from the visual genome label space).

Prompt sampling hyperparameters During training, a prompt for each example. We construct
prompts from three pieces of information:

• Positives: These are the bounding boxes for objects definitely present in the image. During
training, per example we sample p+ ∼ U(0, P+

max), and keep that proportion of positives.

• Negatives: These are the known instance negatives i.e. bounding boxes for objects definitely
not present. For exhaustively labelled datasets like COCO, this is simply classes not labelled
as positives. For non-exhaustively labelled datasets like LVIS, these are the classes not
labelled as positives, which were presented to raters. During training sample f− ∼ U(0, 5.0),
and use up to f− × n+, where n+ is the number of positives after sampling p+.

• Global negatives: These are negatives which are not explicitly labelled as negatives. They
are taken from a wider label space combining multiple detection datasets. For a given
example, valid global negatives consist of classes from the wider label space not explicitly
labelled as positives or negatives. During training, we sample fGN ∼ U(0, 5.0) and append
f × n+ global negatives, where n+ is the number of positives after sampling p+.

By default, the combined label spaces of Visual Genome, Objects365 and OpenImagesV4
was used as the global label space, with the exception of detection finetuning, where LVIS
and COCO label spaces were also added.

We truncate the number of total classes to nmax. nmax and P+
max) are tuned per dataset to meet

sequence lengths. Afer truncatation, we shuffle classes in the prompt.
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E.2 Preprocessing

During pre-training, data is preprocessed to remove all LVIS-rare labels, following the protocol of
OwlViT [28]. This is not done for detection finetuning. Images are randomly flipped horizontally,
and randomly resized to between 0.3 and 2.0 × their original sized, followed by selecting a random
square crop of the current training resolution. If the image is resized to be smaller than the current
resolution, it is left as is. Images are finally padded to a square.

E.3 Licenses and attribution for images used in Main Text Figure 2

• Watermelon: Credit: Sarah Pflug
https://burst.shopify.com/photos/cutting-watermelon.

• Bowls:
https://www.flickr.com/photos/ariesandrea/502826051/ CC-BY-NC-ND 2.0

• Business cat Credit: Sarah Pflug,
https://burst.shopify.com/photos/business-cat-in-office

• Wall Credit: Matthew Henry
https://burst.shopify.com/photos/man-walking-in-front-of-this-is-paradise-wall?c=urban-life
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