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Abstract

The problem of knowledge-based visual question answer-
ing involves answering questions that require external knowl-
edge in addition to the content of the image. Such knowl-
edge typically comes in a variety of forms, including visual,
textual, and commonsense knowledge. The use of more
knowledge sources, however, also increases the chance of
retrieving more irrelevant or noisy facts, making it difficult
to comprehend the facts and find the answer. To address
this challenge, we propose Multi-modal Answer Validation
using External knowledge (MAVEXx), where the idea is to val-
idate a set of promising answer candidates based on answer-
specific knowledge retrieval. This is in contrast to existing
approaches that search for the answer in a vast collection
of often irrelevant facts. Our approach aims to learn which
knowledge source should be trusted for each answer can-
didate and how to validate the candidate using that source.
We consider a multi-modal setting, relying on both textual
and visual knowledge resources, including images searched
using Google, sentences from Wikipedia articles, and con-
cepts from ConceptNet. Our experiments with OK-VQA,
a challenging knowledge-based VQA dataset, demonstrate
that MAVEXx achieves new state-of-the-art results.

1. Introduction

Over the past few years, the domain of Visual Question

Answering (VQA) has witnessed significant progress [2, 41,
, 32]. There is a recent trend towards knowledge-based

VQA [37, 36, 25] which requires information beyond the
content of the images. To correctly answer those challenging
questions, the model requires not only the ability of visual
recognition, but also logical reasoning and incorporating
external knowledge about the world. These knowledge facts
can be obtained from various sources, such as image search
engines, encyclopedia articles, and knowledge bases about
common concepts and their relations.

Figure 1 illustrates a few visual questions and the knowl-
edge from different external sources required to answer them.
Each question needs a different type of external knowledge.
For example, to identify the movie that featured a man telling

Q: Which movie featured a
man in this position telling
his life story to strangers?

Baseline: Cloth
Ours: Forrest Gump

Wikipedia facts

* Forrest gump, named after general
Nathan Bedford Forrest, narrates the
story of his life.

* Gump is portrayed as viewing the ...

ConceptNet relations

* Vegetarian food HasProperty Healthy
* Eating vegetables HasProperty Healthy
* Beans RelatedTo  Healthy

—_—=3

Image knowledge

" WA e

Figure 1: We address the problem of knowledge-based ques-
tion answering. Retrieving relevant knowledge among di-
verse knowledge sources (visual knowledge, textual facts,
concepts, etc.) is quite challenging. The goal in this paper is
to learn what knowledge source should be used for a partic-
ular question and how to validate a set of potential answer
candidates using that source.

.. Qs this a healthy dish?
Baseline: No
Ours: Yes

Q: What breed of dog is
the dog in this photo?

Baseline: Shepherd

= Ours: Golden retriever

his life story to strangers, we need to link the image content
and question to some textual facts (blue box in the figure);
Vegetarian food and eating vegetables is related to the con-
cept of health (green box); and the retrieved images for
‘golden retriever’ (yellow box) are visually similar to the
dog in the question image. The challenge is to effectively
retrieve and correctly incorporate such external knowledge
in an open domain question answering framework.

We also witness a shift on knowledge-based VQA
datasets—from structured retrieved knowledge such as
triplets and dense captions [37, 36] to unstructured open
knowledge [25]. Most recent knowledge-based VQA sys-
tems [25, 36, 42, 24] follow a two-stage framework, where
a retriever first looks up knowledge relevant to the question
and the image, and then a separate comprehension model
predicts the answer.

However, knowledge retrieved directly for the question
and image is often noisy and not useful for predicting the
correct answer. For example, as shown in Figure 2, the
sentences retrieved using only the words in questions and
objects in images (top) or a wrong answer (middle) are hardly



Question + The modern game of tennis originated in Birmingham, England, in the late
Image 19th century as lawn tennis.
%J:S;'?_n + It is popular for sports fixtures and hosts several annual events including a
Incogrrect Answer free opera concert at the opening of the opera season, other open-air
concerts, carnival and labour day celebrations, and the Copenhagen historic
(Copenhagen) grand prix, a race for antique cars.
- — Question +
What English city is famous Image + Wimbledon is notable for the longest running sponsorship in sports history
for a tournament for the Correct Answer due to its association with slazenger who have supplied all tennis balls for the
sport this man is playing? (Wimbledon) tournament since 1902.

Figure 2: Examples of retrieved Wikipedia sentences using different sets of search words. The sentences retrieved using only
the words in questions and objects in images (top) and the wrong answer (middle) are hardly helpful to answer the question.
However, with the correct answer “Wimbledon™ (bottom), the quality of the retrieved fact is significantly improved.

helpful to answer the question. This increases the burden on
the answer predictor, leading to only marginal improvements
from the use of retrieved knowledge [25]. Interestingly, with
the correct answer “Wimbledon” (bottom), the quality of the
retrieved fact is significantly improved, making it useful to
answer the question. This observation motivates us to use
retrieved knowledge for answer validation rather than for
producing the answer.

To address this challenge, we propose a new framework
called MAVEx or Multi-modal Answer Validation using
External knowledge. The key intuition behind MAVEX is
that verifying the validity of an answer candidate using re-
trieved knowledge is more reliable compared to open knowl-
edge search for finding the answer. Therefore, we learn a
model to evaluate the validity of each answer candidate ac-
cording to the retrieved facts. For this approach to work,
we need a small set of answer candidates to start with. We
observe that while state-of-the-art VQA models struggle
with knowledge-based QA, these models are surprisingly
effective at generating a small list of candidates that often
contains the correct answer. Using these candidates to guide
knowledge search makes retrieved facts less noisy and often
more pertinent to the question, as shown in Figure 2.

MAVEX evaluates the validity of each answer candidate
according to a diverse set of multi-modal knowledge facts
that may be noisy or even conflicting. To address this, we
propose a consistency criterion to assess whether each knowl-
edge source used to retrieve facts for a specific answer can-
didate is actually reliable for supporting that answer. We
evaluate our framework, MAVEX, on the OK-VQA dataset
[25], the largest knowledge-based VQA dataset to date. Our
approach achieves the state-of-the-art results on OK-VQA.
This demonstrates that answer-specific knowledge retrieval
results in more informative supporting evidence and a more
solid knowledge-based VQA system.

In summary, our main contributions are: (a) We intro-
duce a novel approach that uses answer candidates to guide
knowledge retrieval for open-domain VQA; (b) We use multi-

model knowledge retrieval by exploring visual knowledge
along with textual knowledge; and (c) We propose a consis-
tency criterion to decide when to trust knowledge retrieved
from each source.

2. Related Work

Visual Question Answering. Visual Question Answering
(VQA) has made significant progress over the past few years
]. More recent VQA systems
[21, 34,20, 19, 38, 17, 40, 6, 22] first extract visual features
from a pre-trained object detector. Then they feed both vi-
sual and textual embeddings into a multi-modal transformer,
which is pre-trained in a self-supervised way on an auxiliary
task using a large-scale image captioning dataset such as
[30]. Text-VQA [32] enables the VQA model to read by
incorporating Optical Character Recognition (OCR) into the
system. These models achieve remarkable performance on
the VQA [2] dataset, however, they can only reason based on
the image content and do not have a mechanism to explicitly
incorporate knowledge from external sources.
Knowledge-Based VQA. Knowledge-based VQA requires
acquiring commonsense or factual knowledge outside the
image to answer the questions. We discuss the datasets and
models developed for this task:

Datasets: KB-VQA [37] includes 2,402 questions gen-
erated by templates for 700 images. F-VQA [36] contains
5,826 questions, where each question-answer sample is an-
notated with a ground-truth fact triplet retrieved from the
knowledge base. OK-VQA dataset [25] is a more recent
dataset that covers a wide range of topics and includes 14,055
questions on 14,031 images. Our focus is on the OK-VQA
dataset since it provides a larger scale dataset that requires
open-domain knowledge. Knowledge-based VQA datasets
to date are typically small compared to the traditional VQA
datasets due to the difficulty of collecting such datasets. The
small scale of the datasets adds to the challenges for learning
robust models.

KB-VQA models: Recent methods for knowledge-based
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Noun Chunks (S1-a)

Object Linking (S1-b) Annotations (S1-c)

ConceptNet Concepts (S3-b)

Question: When was the cola Phrase 1: Phrase 1: Phrase 1:
brand on the signs founded? M;.:” - board (tagging)
Answer: 1892 cola brand [T - coca cola (brand)
— E:> Phrase 2: E> Phrase 2: E> Phrase 2:
S . - stop sign (tagging)
o signs - stop (OCR)
L /| - coca cola (brand)
Wikipedia Sentences (S3-a) @
In 1892, Candler set out to incorporate a second company; "The
Coca-Cola Company" (the current corporation) ... Search Words
w - Board i

Conversion to Statement (S2)

1
1 1
| - Coca Cola i
H 1
@ <Cola, RelatedTo, Limonade>, <diet coke, RelatedTo, cola> <:| : - Stop sign :
<Coca Cola, IsA, Coke>, <water, RelatedTo, Cola> ... : - Stop I
\ - Colabrand '
Images (S3-c) ! - Signs i
1 - Found H
1
1

Statement: The cola brand on the
signs was founded in 1892. I:>

Sqa

Figure 3: An example of the retrieval process for one question-answer pair.

VQA mainly follow two trends, template fitting and learning-
based approaches. [37] fit the query to several predefined
query templates and explicitly reason about the answer using
the templates. The main limitation of the template fitting
approaches is that the template is hand designed and it is
hard to accommodate rich knowledge required to answer
the questions using templates. Therefore, learning-based
approaches are proposed to fetch helpful facts and com-
monsense knowledge for better performance. [27] learn to
retrieve relevant facts from a knowledge base. [30] learn
to find the mappings from the question to a query triplet.
[26] propose to apply GCN [35] on the fact graph where
each node is a representation of an image-question-entity
triplet. [42] propose a modality-aware heterogeneous GCN
capturing the most supporting evidence. [I8] introduce a
knowledge graph augmentation model to retrieve context-
aware knowledge subgraphs, and then learn to aggregate
the useful visual and question relevant knowledge. [24] use
knowledge implicit in the embeddings and explicit symbolic
knowledge. In contrast to these approaches, we formulate
our problem as an answer validation problem, where the
idea is to learn to validate a set of potential answers using
multi-modal noisy knowledge sources.

3. The MAVEx Framework

We now present our MAVExX framework, a two-stage
scheme that first retrieves knowledge and then predicts the
answer. The scheme has been widely adopted in knowledge-
based QA tasks in both NLP [5, 33] and computer vision
communities [25, 18]. Different from previous works, be-
yond retrieving textual knowledge potentially relevant to the

question, we propose to mine multi-modal answer-specific
knowledge for each answer candidate. In particular, we con-
sider three knowledge sources: Wikipedia and ConceptNet
as textual knowledge resources, and Google images as the
image knowledge resource, for providing factual, common-
sense, and visual knowledge, respectively. Then, an answer
validation module tests each answer candidate using the
retrieved multi-modal knowledge.

3.1. Answer Guided Knowledge Retrieval

Given a question ¢ about an image I and an answer can-

didate a from a set of possible answers (see Section 3.2
for details of answer candidate set generation), we retrieve
external knowledge in support of a in three main steps. Fig-
ure 3 shows the entire process for an example question and
a candidate answer.
S1: Answer-Agnostic Search Word Extraction. We first
generate short phrases in ¢ and concepts represented in 1
as a starting point for retrieving external information. This
involves the following sub-steps:

Extract Noun Chunks from ¢: We parse the question us-
ing a constituency parser to compute the parse tree. Then, we
extract all the nouns on the leaves of the parse tree together
with the words that describe the nouns and belong to one
of the types from ‘ADJP’, ‘ADVP’, ‘PP’, ‘SBAR’, ‘DT’ or
‘JJ’. Those words help us to link the mentioned objects to
the images. We use AllenNLP [10] constituency parser. See
Figure 3 (S1-a).

Link Nouns to Objects: As images usually contain plenty
of question-irrelevant contents, making the retrieval process
hard to operate, we propose to narrow down the search field




to the objects referred to by the question. In particular, we
use ViLBERT-multi-task [22] as the object linker, where it
outputs scores given the noun phrases from the questions.
We approve the linking when the linker’s score is higher than
0.5 and extract the linked objects. See Figure 3 (S1-b).

Annotate Objects: We automatically provide the category
labels, OCR readings and logo information for the linked
objects using Google APIs to enrich the retrieved knowledge.
See Figure 3 (S1-c).

The set of answer-agnostic search words, W, consists of

all of noun chunks and verbs in ¢, OCR, tagging (detection),
and logo annotation of the referred objects, if any.
S2: Conversion to a Natural Language Statement. In
order to use the answer candidate a to inform the retrieval
step, we convert ¢ and a into a natural language statement
Sqa using a rule-based approach [7]. Such conversion has
been found to be effective as statements occur much more
frequently than questions in textual knowledge sources [15].
S3: Answer Candidate Guided Retrieval. We now use
the search words W, from step S1, along with the answer
candidate ¢ and the statement S, from step S2, to retrieve
relevant information as follows:

Retrieval of textual facts: We query each search word
w € Wy, and collect all sentences from the retrieved
Wikipedia articles.! For each answer candidate a, we first
collect answer-specific sentences that contain a (ignoring
stop words and yes/no). Then we rank those sentences based
on the BERTScore [39] between the statement S;, and the
sentences. We then encode each of the top k), sentences us-
ing a pre-trained BERT [8] model and extract the final layer
representation of the [CLS] token. This results in an answer-
specific (denoted sp) feature matrix K{ (a) € RF: 768 for
each question-answer pair. We also store the retrieved sen-
tences and their corresponding BERTScores for all answer
candidates. We then choose the top kg;, non-repeated sen-
tences according to the stored scores as the answer-agnostic
knowledge. Those sentences are also encoded using pre-
trained BERT, resulting in an answer-agnostic (denoted ag)
feature matrix K, € R¥as*7% for each question.

Retrieval of concepts: While Wikipedia articles provide
factual knowledge that people need to look up when they
answer a question, ConceptNet offers structured knowledge
of concepts. Similar to Wikipedia article retrieval, we also
query each search word in W, and collect all retrieved con-
cepts. For each answer candidate a, we extract the concepts
whose subject, relation, or object contains the candidate
a, and push all retrieved concepts to the answer-agnostic
concept pool. We rank those extracted concepts based on
the maximum cosine similarity between the Glove embed-
ding [28] of the words in W, and those in the concept,
and select the top kg, concepts as answer-specific knowl-
edge. We also select the top kg, concepts similarly from

'We use the python API https://github.com/goldsmith/Wikipedia.

the answer-agnostic concept pool. The subjects, relations,
and objects in the selected concepts are first converted into
a sentence by handcrafted rules, and then encoded using
pre-trained BERT model. Finally, the last layers’ representa-
tion vectors are concatenated, resulting in a feature matrix
K{,(a) € RF:» %768 for each question-answer pair, and a
feature matrix K, € RFas X708 for each question.

Retrieval of visual knowledge: Pure textual knowledge is
often insufficient due to two main reasons: (1) textual knowl-
edge might be too general and not specific to the question
image, (2) it might be hard to describe some concepts using
text, and an image might be more informative (e.g., the 3rd
question in Figure 1). Hence, visual knowledge can com-
plement textual information, further enriching the outside
knowledge feature space. We use Google image search to re-
trieve the top k; images using the statement S, as the query.
The images are then fed into a MaskRCNN [ 1] finetuned on
the Visual Genome dataset [4 1] to extract at most 100 object
features. We average the object features of visual detection
results as the answer-specific visual knowledge representa-
tion, resulting in a feature matrix Kip(a) € R¥:» X768 for
each question-answer pair. For answer-agnostic knowledge,
we simply use the zero vector.

3.2. Answer Candidate Validation

The answer validation module takes as input a question g,

its visual features v, an answer candidate a, and the support-
ing knowledge K/ , and Kgp(a) retrieved for a from each
knowledge source j. It outputs a scalar score indicating how
well the knowledge supports a.
Answer Candidate Generation. In order to use answer
candidates to inform knowledge retrieval, we use VILBERT
[21], a state-of-the-art VQA model, to generate answer can-
didates. Note that any VQA model can be used for this
purpose. As discussed in the experiments section, we found
VIiLBERT to be particularly effective at generating a small
set of promising candidates.

3.2.1 Knowledge Embedding Module

We use cross-modal attention [38] in the knowledge embed-
ding module, that treats the question-image embedding as a
query to mine supportive knowledge from each source.

We first briefly introduce the Self-Attention (SA) and
Guided-Attention (GA) units” as the building blocks. The
SA unit takes as input a group of feature vectors X =
[21;...;2m] € R™*? and learns the pairwise relationship
between each sample pair within X using a multi-head atten-
tion layer by treating all possible combinations of x; and x;
as queries and keys. Different from SA, the GA unit uses
another group of features Y = [y1;...;9,] € R™*? to guide
the attention learning in X. In particular, the GA unit learns

2Please refer to [38] for detailed model architectures.
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Figure 4: Model overview for validating two candidate answers. We explore three sources of external knowledge, ¢.e.
Wikipedia, ConceptNet, and Google Images presented by the three parallel knowledge embedding modules. The grey blocks
denote answer-agnostic features shared by all answer candidates and the green blocks denote answer-specific features.

the pairwise relationship between each pair across X and Y
and treats each y; as query and each z; as keys. The values
of the keys are weighted summed to produce an attended
output features T € R™*? for both SA and GA. Finally, a
feed-forward layer with residual links are built upon T to
transform the output features to a new features space.

Given an image and the corresponding question, we first
use VILBERT to extract visual features v € R1%24 and ques-
tion features q € R4 from the last layer of VILBERT’s
[IMG] and [CLS] tokens, respectively. We then compute a
joint feature U by element-wise multiplication of q and v. U
is used as a query to mine answer-agnostic features z/ g U
and the BERT embeddings of the answer candidates are used
to mine answer-specific features zgp(a, a') for the answer
candidate a from each one of the three knowledge sources j
as described in Egs. (1) and (2):

z},, = GA(SA(U),SA(K},)) (1)
zl,(a,a’) =z}, © GA(SA(BERT(a)), SA(K,(a"))) (2)

sp
where a and o’ are two answer candidates and the index j
denotes one of the knowledge sources (Wikipedia w, Con-
ceptNet ¢, or Google images ¢). Specifically, the answer-
specific features zgp(a, a') encode the joint features of @ and
the knowledge retrieved using a’, and are further used to
predict how well the knowledge retrieved by a’ supports a.

3.2.2 Answer Validation Module

The validation module uses the attended knowledge features
zgp and zgg from the three sources to validate the answer
candidates. We introduce two approaches, early fusion and
late fusion, to compute the validation score for each answer.

Early Fusion. This approach first merges the representa-
tions from the three knowledge sources, and then predicts the
supportiveness score for each answer. Since not all knowl-
edge sources are necessarily helpful, we encourage that at
least one knowledge source provide helpful information to
verify the answer by max pooling the answer-specific knowl-
edge vectors (z%(a,a’), 25, (a, a') and 2, (a, a’)) from the
three sources retrieved by the answer a’, producing a single
vector Zg,(a, a’) that contains the joint information.

Then, a feed-forward network, taking this joint represen-
tation as input, computes the validation score J(a, a’) that
indicates how well the knowledge retrieved by a’ supports a,
as shown below:

J(a,a’) = FFN( max z],(a,a’)), 3)
je{w,c,i}

where FFN denotes a feed-forward network that contains
two FC layers (specifically, FC-GeLU-LayerNorm-FC). We
also use the answer-agnostic features to predict a VQA score
P for all answers in the set as P = FFN(max;{z],}).

Late Fusion. Different from early fusion, where the deci-
sion is made according to the joint features from the three
sources, the late fusion approach lets each knowledge source
predict its own supportiveness score. The goal of this set-
ting is to prevent misleading knowledge from contaminat-
ing valid knowledge from other sources. In particular, we
compute the supportiveness score .J7 for each source as
J(a,a’) = FFN(z},(a,a’)), where FFN denotes a feed-
forward layer. Then, the final score is computed by tak-
ing the maximum support score across the three sources as
J(a,a’) = max; {J?(a,a’)}, where j € {w, ¢, i} denotes
the source index. We use the answer-agnostic features to pre-
dict single source VQA scores P7 for all answers in the set
as P/ = FFN(z],,), and the final VQA score P is computed



as P = max;{P7}. The overall architecture of the model is
shown in Figure 4.

Consistency Criteria. The intuition behind our consistency
criteria is that for the correct answer a, the knowledge re-
trieved for a from the most confident source (the one with the
highest supportiveness score for a) should support @ more
than it supports other answer candidates, and it should also
support a more than knowledge retrieved for other answer
candidates. Specifically, we approve the answer validation
score J(a,a) only if it is higher than the scores computed
using this knowledge for all other answers as well as the
score for a when using knowledge retrieved for other an-
swers. Mathematically, the consistency criteria checks that
J(a,a) > J(a’,a) and J(a,a) > J(a,a’) forall @’ # a. If
the above condition is not met, we output the answer with the
maximum VQA prediction score P(a); otherwise we output
the answer with the maximum VQA-weighted validation
score J(a,a)P(a).

3.3. Training and Implementation Details

Implementation. We implemented our approach on top
of VILBERT-multi-task [21], which utilizes a Mask-RCNN
head [ 1] in conjunction with a ResNet-152 base network
[12] as the object detection module. Convolutional features
for at most 100 objects are then extracted for each image as
the visual features, 7.e. a 2,048 dimensional vector for each
object. For question embedding, following [8], our frame-
work utilizes a BERT tokenizer to tokenize the question and
use the first 23 tokens as the question tokens. We encode
top 10 Wikipedia sentences, 20 concepts and 5 images as the
answer-specific retrieved knowledge features, i.e. kg,=20,
k¢,=20 and k% =5, and we use 20 sentences and 20 concepts
as answer-agnostic knowledge features, i.e. kg, =20, kg ,=20.
The number of hidden units in the SA and GA modules in
the answer validation module is set to 1,024 to match the
dimension of the VILBERT features.
Training. The OK-VQA test images are a subset of COCO
validation images which are used to pre-train most of
transformer-based vision and language models [21, 34, 19].
Although the test questions never appear in the pre-training
process, other questions on the test images may help the
system understand the image better, leading to a higher per-
formance. Besides, there is also data contamination from
extra object annotations from Visual Genome (VG) dataset,
which also contains some OK-VQA test images. As the
VG dataset is used to pre-train the object detector, those
test images can access the ground truth object annotations.
We carefully remove all OK-VQA test images from the pre-
training and re-train the VILBERT-multi-task model and the
object detector from scratch using the default configurations.
For answer candidate generation, we finetune the
ViLBERT-multi-task model on OK-VQA using default con-
figuration for 150 epochs. Binary cross-entropy loss and

VQA soft score® are employed to optimize the system. We
use the finetuned model to extract the top 5 answers for each
question in the training and test set. We follow the default
settings of VILBERT. BertAdam optimizer [8] with a linear
warmup learning rate is applied.

For the training of the answer validation module, we
optimize the validation score J(a, a’) using the loss in Eq.
4 for the three knowledge sources, where s(a) denotes the
VQA soft scores for answer a. We also add the standard
VQA loss on the VQA score P to train the answer-agnostic
knowledge embedding modules. We train the system using
a learning rate of le-5 for the VILBERT parameters and
le-4 for the parameters that are additionally introduced in
the validation module. We freeze the first 6 layers of the
ViLBERT base network. We use L., to denote binary cross-
entropy loss.

LMavex = ﬁbce( max J(a,a"), 0)

s.t.a#a’

—|—£bce( max J(a,a’), 0)

s.t.a #a’
+ Lpee (J(a,a), s(a)) 4
4. Experiments

We evaluate our answer validation framework on the OK-

VQA dataset [25]. We first briefly describe the dataset, and
then present our result and provide comparisons to the cur-
rent state-of-the-art systems.
OK-VQA dataset. It is the largest knowledge-based VQA
dataset at present. The questions are crowdsourced from
Amazon Mechanical Turkers, leading to two main advan-
tages: (1) the questions indeed require outside knowledge
beyond images; (2) there are no existing knowledge bases
that cover all the questions, thus requiring systems to explore
open-domain resources. The dataset contains 14,031 images
and 14,055 questions covering a variety of knowledge cate-
gories. The metric is the VQA soft score (see footnote 3).

4.1. Intrinsic Evaluation

We begin with an intrinsic evaluation of MAVEX, as-

sessing the quality of the answer candidate generation and
knowledge retrieval modules.
Answer Candidate Accuracy. Our answer candidate gen-
eration module, which is based on the finetuned ViLBERT-
multi-task model, outputs its top-5 answers as the candidates.
We found that the best answer in this small candidate set
achieves a VQA soft score of 59.7 on the test set, substan-
tially higher than the top-1 answer score of this system (35.2)
as well as other state-of-the-art systems without data con-
tamination (33.7 or below).

3 OK-VQA provides 5 annotations for each question. Soft scores are 0,
0.6, and 1 corresponding to 0, 1, more than 1 matching answer annotations.



Method Knowledge Resources Performance
ArticleNet (AN) [25] Wikipedia 5.3
Q-only [25] — 14.9

MLP [25] — 20.7
BAN [16] — T 72520

+ AN [25] Wikipedia 25.6

+ KG-AUG [ 18] Wikipedia + ConceptNet 26.7
MUTAN [3] — T T 204

+ AN [25] Wikipedia 27.8
Mucko [42] Dense Caption - 7292 7
KRISP [24] Wikipedia + ConceptNet 32.3%

+ VQAV2 Pre-training Wikipedia + ConceptNet 37.8%

+ VQAV2 (incl. graph) Pre-training Wikipedia + ConceptNet 38.9"
ConceptBert [9] ConceptNet 33.7
VILBERT [21] — 35.2%
MAVEX (ours) — w/o answer validation Wikipedia + ConceptNet + Google Images 37.6"
MAVEX (ours) — Early Fusion Wikipedia + ConceptNet + Google Images 37.8%
MAVEX (ours) — Late Fusion Wikipedia + ConceptNet + Google Images 38.7"
MAVEX (ours) — Late Fusion (Ensemble 5) | Wikipedia + ConceptNet + Google Images 39.4"
RVLT [31] Wikipedia + ConceptNet 39.07
MAVEx ' (ours) — Late Fusion Wikipedia + ConceptNet + Google Images 40.5t

Table 1: MAVEXx outperforms current state-of-the-art approaches on the OK-VQA dataset. The middle column lists the
external knowledge sources, if any, used in each VQA system. { indicates that the system uses a pretrained model that is
contaminated by OK-VQA test images. * indicates that the results have been reported on version 1.1 of the dataset. The

difference between version 1.0 and 1.1 is different ways of answer stemming. As reported in [

in the results obtained on these two versions.

We also evaluate the score achieved by slightly larger
candidate sets, consisting of the top 6, 8 and 10 candidates.
These achieve VQA soft scores of 62.1, 65.1, and 67.1, re-
spectively. Since our answer validation framework needs to
retrieve and encode answer-specific knowledge, we use only
top-5 answer candidates as a reasonable trade-off between
efficiency, answer coverage, and overall accuracy.
Knowledge Retrieval Accuracy. We assess the accuracy
of our knowledge retrieval modules for Wikipedia and Con-
ceptNet using the OK-VQA test set.

For Wikipedia sentences, we observe that 71.8% of the
top-10 Wikipedia sentences retrieved for question-answer
pairs contain the answer candidate used for retrieval, sug-
gesting strong relevance of the answer-specific knowledge.

For ConceptNet concepts, we first define a strong relation
set where both the answer candidate and at least one other
search word generated from S1 exist in the concept triplets.
29% of question-answer pairs* have concept triplet(s) inside
the strong relation set, indicating answer relevance.

4.2. Main Results

Table 1 shows that MAVEX consistently outperforms
prior approaches by a clear margin. For example, MAVEx
outperforms recent state-of-the-art models Mucko [42],

4The correct answer included if not among the answer candidates.

] there is not much difference

KRISP [24], and ConceptBert [9] by 9.5, 6.4, 5.0 points,
respectively. Our approach also outperforms ViLBERT [21]
base system by 3.5 points. We consider a MAVEX baseline
model that uses the retrieved knowledge (K ) as additional
inputs without answer validation. This model achieves 37.6
overall score, 2.4% higher than the VILBERT model and
1.1% lower than the late fusion model, indicating that using
answer-guided retrieved knowledge is helpful and answer
validation further improves the performance. An ensemble
of 5 MAVEX late fusion models with different initializations
improves the results to 39.4. The standard deviation of the 5
runs is 0.2. We also observe that the late fusion setting out-
performs early fusion by 0.9, indicating that it is important
to allow each knowledge source to make its own decision
first, and then combine the information across sources.

4.3. Ablation Study of Knowledge Sources

We use the late fusion model and report, in the 2nd col-
umn of Table 2, the system’s performance when only one
knowledge source is used. We see that the three sources
provide an improvement of 2.6, 2.2, and 2.0, respectively,
compared to not using any external knowledge source. This
indicates the effectiveness and value of all three sources.

The combination of the three sources achieves a net per-
formance gain of 3.5 over the VILBERT baseline, supporting
the intuition that the three sources together provide comple-



‘What is the complimentary
color to the frisbee

Blue (MAVEx)

Because orange and blue are
complementary colors, life
rafts and life vests are
traditionally orange, to
provide the highest contrast

Red (VQA)

In the indian subcontinent,
red is the traditional color of
bridal dresses, and is
frequently represented in the
media as a symbolic color for

Name the dish which is
prepared using these fruits

Banana split (MAVEx)

There are many variations,
but the classic banana
split is made with three
scoops of ice cream (one
each of vanilla, chocolate,

Banana (VQA)

and visibility when seen from married women
ships or aircraft over the

ocean

Umpire (MAVEXx)

Pitcher (VQA)

Umpire,related to, referee
Umpire, synonym, referee
Umpire, related to, baseball
official

and strawberry) served
between the split banana

‘What are the people
queuing for
_—r

Luggage (MAVEXx)

Travel (VQA)

Travelling, form of, travel
Trip, related to, travel
Travel agency, derived from,
travel

Figure 5: Examples that the VQA model is wrong but MAVEX with the three external knowledge sources answers correctly.
The correct answer is in the green box and the incorrect answer is shown in the red box. The grey box shows the question. The
most influential knowledge content (judged by GradCAM [29]) is shown in the boxes under the predicted answers.

mentary pieces of knowledge.

We show some qualitative examples in Figure 5, where
the VQA model is wrong but provides good answer candi-
dates. Our MAVEX gathers the external knowledge from the
three sources and predicts the correct answers.

4.4. Oracle Performance as Upper Bounds

We present two oracle settings to show the potential of
our framework. The first oracle selects the best knowledge
source at test time in the late fusion setting. The second
oracle adds one correct answer’ to the answer candidate set.
Oracle Source Selector. Our answer validation framework
achieves an oracle score of 43.5 if we choose the best source
to trust for each question. This indicates that the three knowl-
edge sources provide complementary features, leaving fur-
ther potential to improve the system.

Oracle Answer Candidates. The top-5 answer candidate
list we use in MAVEX does not always contain the correct
answer. To assess the potential of a more powerful answer
candidate generator, we consider the performance of MAVEx
when the ground-truth answer is guaranteed to be in the can-
didate set. Specifically, for the questions whose extracted
answer candidate set did not contain the correct answer, we
use one correct answer with the maximum soft score to re-
place the least scoring answer in the list. The results are
shown in the last column of Table 2. The 4.3-4.7 gain over
using original extracted answers suggests that extracting
a better answer candidate set can make MAVEx more ef-
fective. Figure 6 presents some examples where the VQA
answer candidate set does not contain the right answer. By
manually adding the right answer to the candidate set, the
validation module is able to find the supportive evidence and

SIf there are more than one correct answer with soft scores larger than
zero, we choose the one with largest soft score.

What is the white cloud
behind the jet called

Contrails (MAVEx-oracle)

Smoke (MAVEX)

Contrails, and other clouds
directly resulting from human
activity, are collectively
named homogenitus.
Contrails produced from jet
engine exhaust are seen at
high altitude, directly behind
each engine.

‘What type of program is
playing on the tv

News (MAVEx-oracle) Television (MAVEX)

Figure 6: Examples where the right answer is not in the
extracted answer candidate set. By manually adding the right
answer to the answer candidate set, MAVEX learns to figure
out the most supportive evidence and predicts correctly.

System | Oracle
Knowledge Source Score Score
— 35.2 —
Wikipedia 37.8 42.1
ConceptNet 374 42.0
Google Images 37.2 41.9
Wikipedia + ConceptNet + Images 38.7 43.2

Table 2: Ablation study (2nd col.) using one knowledge
source at a time. Oracle (3rd col.) when the answer list is
altered, if necessary, to contain the correct answer.

predict correctly. The most influential evidence (as judged
by GradCAM [29]) is shown under the prediction boxes.



5. Conclusion

We presented MAVEZX, a novel approach for knowledge
based visual question answering. The goal is to retrieve
answer-specific textual and visual knowledge from different
knowledge sources and learn what sources contain the most
relevant information. Searching through the vast amount of
retrieved knowledge, which is often quite noisy, is challeng-
ing. Hence, we formulate the problem as answer validation,
where the goal is to learn to verify the validity of a set of can-
didate answers according to the retrieved knowledge. More
specifically, an answer candidate validation module predicts
the degree of support provided by the knowledge retrieved
for each candidate, and decides which sources to trust for
each candidate answer. MAVEx demonstrates the clear ad-
vantages of answer-guided knowledge retrieval, achieving
new state-of-the-art performance on the OK-VQA dataset.
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