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Abstract

Daily scenes are complex in the real world due to occlusion, undesired lighting conditions, etc.
Although humans handle those complicated environments well, they evoke challenges for ma-
chine learning systems to identify and describe the target without ambiguity. Most previous
research focuses on mining discriminating features within the same category for the target ob-
ject. One the other hand, as the scene becomes more complicated, human frequently uses the
neighbor objects as complementary information to describe the target one. Motivated by that, we
propose a novel Complementary Neighboring-based Attention Network (CoNAN) that explicitly
utilizes the visual differences between the target object and its highly-related neighbors. These
highly-related neighbors are determined by an attentional ranking module, as complementary
features, highlighting the discriminating aspects for the target object. The speaker module then
takes the visual difference features as an additional input to generate the expression. Our qualita-
tive and quantitative results on the dataset RefCOCO, RefCOCO+, and RefCOCOg demonstrate
that our generated expressions outperform other state-of-the-art models by a clear margin.

1 Introduction

Generating referring expressions (Mao et al., 2016; Yu et al., 2016; Liu et al., 2017; Yu et al., 2017;
Tanaka et al., 2019), which identify target objects with simple words and phrases in everyday discourse,
has attracted attention from both computer vision (CV) and natural language processing (NLP) com-
munities. With the rapid development of RNNs (Hochreiter and Schmidhuber, 1997; Cho et al., 2014;
Bahdanau et al., 2014) and the emergence of transformers (Vaswani et al., 2017), machine learning sys-
tems can generate linguistically correct expressions in most cases. However, the remaining issue in the
referring expression generation (REG) field is to avoid ambiguities (i.e. the generated expression should
refer to a unique target object). This issue becomes increasingly important when referring to an object
in complex daily scenes where occlusion, undesired lighting conditions, complex formation of objects,
occur regularly. This complex nature inhibits the system from mining the unique features automatically
for the target object among its visually similar ones.

Previous works have mainly investigated model architectures to generate less ambiguous expressions.
Speaker-Listener models (Mao et al., 2016; Liu et al., 2017) are widely adopted to encourage a speaker
to generate expressions that can be comprehended by listener model. Further, Yu et al. (2017) employs
a reinforcer module to reward the system if the generated expression is bonded to the target object. In
order to find discriminative features for the target object and generate less ambiguous expression, plenty
of research utilizes the visual differences between the target objects and the objects that belong to the
same category determined by an object detector.

However, when multiple visually similar objects appear in the scene, mining the discriminative fea-
tures for the target object becomes challenging. Instead, a human would use the surrounding objects
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to help clarify the target one. Motivated by that, we propose a Complementary Neighboring-based At-
tention Network (CoNAN) that explicitly utilizes and highlights the visual difference between the target
object and its neighbors, instead of mining discriminative feature within a class. CoNAN first finds and
computes visual differences of the k spatial neighbors for each target object, and then uses the attentional
ranking module to rank the potential contribution of each the neighbor object. Finally, the speaker (ex-
pression generator) in CoNAN additionally takes the top-M ranking visual differences together with the
target object and the global representation as inputs to generate referring expressions.

Note that the CoNAN is compatible with most current learning-based expression generation systems.
In particular, we adopt SLR(Yu et al., 2017) as our baseline system. Experimental evaluation shows
a significant improvement for the generated expression compared to the state-of-the-art on the three
RefCOCO datasets.

2 Related Work

2.1 Image Captioning

Image captioning (Vinyals et al., 2015; Anderson et al., 2018) is the task of generating textual sentences
of the given image. Similarly, the referring expression generation task aims at describing a specific object
in the daily environment unambiguously. Therefore, it requires machine learning system to figure out
the key discriminating aspect of the target object for unambiguity while image captions only describe the
general visual content. Most recent approaches use either recurrent models (Anderson et al., 2018) or
visual transformers (Lu et al., 2019), on top of object-based bottom-up attention for speaker models. To
achieve the unambiguity, REG models employ another comprehension module to check if the generated
expressions can be grounded back to the target object.

2.2 Referring Expression Datasets

Referring expression generation (REG) has been studied for a long time using artificial dataset. The
field has become more active with the appearance of RefCLEF (Kazemzadeh et al., 2014), a large-
scale dataset with 20,000 real-world images. RefCLEF was collected in a two-player game, where one
player clicks on the correct object with given the expression generated by another player. If the player
correctly matches the object and the expression, both players get points and their roles switch. With
the same idea, the authors collected RefCOCO and RefCOCO+ dataset from COCO images (Yu et al.,
2016). The two datasets each contain about 50,000 objects. RefCOCO+ additionally uses location
information for the expressions which are prohibited on RefCOCO. RefCOCOg (Mao et al., 2016) uses
a non-interactive framework to build more complex expressions with further details that contain 54,822
objects with 85,474 referring expressions. Tanaka et al. (2019) proposes RefGTA that contains a complex
composition of images from GTA V with sufficiently diverse appearances and locations.

2.3 Referring Expression Generation

Referring expression generation aims at generating unambiguous sentence given a specific region or
object in a full image. Initial works have been studied on rule-based approaches (Gupta and Stent, 2005;
Janarthanam and Lemon, 2010). Since large-scale datasets (RefCOCO, RefCOCO+, RefCOCOg, etc)
were collected, many studies have tried to use the CNN-LSTM framework in the real world images (Mao
et al., 2016; Yu et al., 2016; Liu et al., 2017; Yu et al., 2017; Tanaka et al., 2019) for automation.

To reduce the ambiguity of object descriptions, Mao et al. (2016) introduced Maximum Mutual Infor-
mation (MMI) training which induces the speaker to generate more discriminative sentences based on the
listener’s response. In detail, the speaker is trained to generate more descriptive captions for the specific
object so that the listener can easily localize the specific region. Yu et al. (2016) proposed to incorporate
a better measure of visual context into the speaker to jointly generate expressions for all same category
objects depicted in an image. Liu et al. (2017) introduced attribute embedding generation which im-
proves the visual representation of the generation model. Yu et al. (2017) proposed a unified framework
for the tasks of generation and comprehension where speaker-listener are trained complementarily by
end-to-end learning with the reinforcer giving guidance to the speaker to generate a more discriminative
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Complementary Neighboring-Based Attention Network (CoNAN)

Figure 1: Framework of CoNAN: we extract the target feature and detected object features. We select the
neighbors of the target based on euclidean distance metric. We calculate the visual difference between
target and neighbor features. We perform a scaled dot-product attention function with ranking strategy.
The aggregated features consist of global feature, target feature, weighted visual difference features and
location/size difference features. We then train the expression generator using those aggregated features
by minimizing the total loss.

sentence. Tanaka et al. (2019) focused on utilizing the environment around the target easy for a human
to locate a target region.

3 Model

In this section, we present a Complementary Neighboring-based Attention Network (CoNAN) for gener-
ating unambiguous referring expressions. In particular, we first extract k neighbor objects for each target
object, detailed in Section 3.1. To mine discriminating features for the target object, visual differences
between it and its neighbors are utilized as complementary inputs. To better encode the local context,
we also employ an attentional ranking strategy that weighs the neighbors to select meaningful ones in
Section 3.2. Finally, we present an expression generating module in Section 3.3 that takes the atten-
tional visual difference, target object feature, and the global features as inputs to generate high quality
expressions.

3.1 Extracting Neighbor Objects

We present the approach of extracting the set of neighbor objects for the target object o?. To avoid dupli-
cation, we first perform non-maximum-suppression (NMS) to filter out the objects whose intersection-of-
union (IoU) with the target box is over 0.5. Then, we extract k-nearest neighbors according to Euclidean
distance between the center of the neighbors’ bounding boxes and that of the target one. We denote the
target object feature as o? and the i-th object’s as oi.

3.2 Visual Difference as Complementary Features

Yu et al. (2016) emphasizes the importance of using the visual difference between the target object and
the other from the same category to reduce the ambiguity. As a result, both unique attributes and spatial
relationships to characterize the target object can be considered.

Instead of comparing to the objects from the same category, our visual differences compare the target
object with all of the neighbors to mine the complementary aspects of the target in the local complex
scene. To avoid overly complex contexts and preserve the briefness of the expression, we construct
an attentional ranking module that ranks and selects interesting neighbor objects when generating the
expression for the target object.
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3.2.1 Computing Visual Differences
We adopted the bottom-up features as the representations for the target and its neighbor objects. In
particular, following (Anderson et al., 2018), the Visual Genome (Krishna et al., 2017) pretrained
Faster-RCNN (Ren et al., 2015) is used as the object feature extractor, resulting in a 2, 048-d vector for
each object in the image. The visual difference δvi between the target object, o?, and the i-th neighbor
object, oi, are calculated as δvi = oi − o?.

3.2.2 Complementary Neighboring-based Attention
In contrast to (Yu et al., 2016), our system utilizes the visual differences between the target object and its
neighbors for all categories to mine the complementary features.

Considering all the neighbors may introduce an overly complex local context. To address this issue,
our system learns sparse attention for each neighbor, and only select top-M meaningful objects as the
concise local context.

Technically, given the target feature o? and visual difference features δvi for the i-th object, we compute
the scaled attention αi as shown in Eq.1. In particular, both the target feature o? and visual difference
δvi first go through a separate feed-forward network, which then we compute the attention logits by the
inner product of the out projected features scaled by 1√

d
. Note that, f denote a linear transformation,

where different f do not share parameters, d the dimension of the hidden feature vector.

αi =
f(o?)T f(δvi )√

d
(1)

To focus on helpful neighbors for generating unambiguous yet concise expressions, we only select
top-M neighbors according to the learnt attention logits αi to form a complementary neighbor object set
S = {i|αi ≥ topM}, where topM denotes the M largest attention logits.

Then, the final complementary visual difference features δ is computed as the weighted sum of the
visual differences of the object in S as shown in Eq. 2

δv =
∑
i∈S

softmax(αi)δvi (2)

3.3 Referring Expression Generator

We employ five different types of features to generate referring expressions using CNN-LSTM frame-
work. In particular, we consider the target object o?, global context g, target location/size l, target context
δv, target location/size context δl.

Global context g is modeled as averaged feature vector of all the detected objects using the pretrained
Faster-RCNN in the image. The location/size representation of target is modeled as a 5 dimension
vectors l =

[
xtl
W , ytlH ,

xbr
W , ybrH , w·h

W ·H
]
, where w, h denote the width and height of the target bounding box

and W,H are the width and height of the image, xtl, ytl, xbr, ybr are the coordinates of the top-left,
top-right, bottom-left, bottom-right corner. This feature presents the relative position and the size of the
object.

With the selected neighbors, we perform complementary neighboring attention to obtain fine-grained
target context δv as described in the previous section. The final visual representation v is a combination
of the above features followed by one linear layer, v =Wm[o

?, g, l, δv, δl].
We use vi to denote the joint feature v that regards the i-th object as the target object, and use ri to

denote the human expression for the i-th object. To generate the expressions for each referred object, the
joint feature vi is fed into an LSTM and we minimize the negative log-likelihood with the parameters θ
as shown in Eq. 3.

L1
s(θ) = −

∑
i

logP (ri|vi; θ) (3)
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3.4 Training Objectives

Following Mao et al. (2016), we use the Maximum Mutual Information (MMI) constraint to encourage
the model to generate expression for the target object oi that can be discriminated from the expression for
another object. In particular, we consider two prior knowledge in advance, (1) ground-truth expression
ri should be more likely generated using the target object oi than other randomly sampled objects ok (2)
the target object is more likely to generate the ground-truth expression ri instead of other expression rj
for the positive pairs. Therefore, we adopt a margin loss as shown in Eq. 4. Note that, λs1, λs2, M1, M2

are hyper-parameters

L2
s(θ) =

∑
i

λs1max(0,M1 + logP (ri|vk)− logP (ri|vi))

+ λs2max(0,M2 + logP (rj |vi)− logP (ri|vi)) (4)

We also use a reinforcer model (Yu et al., 2017) to generate a more precise and discriminative expres-
sion for the target object. Specifically, we build an MLP network to evaluate the consistency between the
generated expression and visual features. Then, we use the evaluation score as a reward. In particular,
we use the local-scene-aware target object feature vi as the visual feature, and an LSTM to encode the
generated expression as the sentence feature. We adopt the policy-gradient technique to optimize the
reward function as shown in Eq. 5.

To achieve better performance, we adopt the re-ranking mechanism that selects the generated expres-
sion whose referred object by the listener module is the closest to the target one.

5θJ = −EP (W1:T |vi)[F (w1:T , vi)5θlogP (w1:T |vi; θ)] (5)

The overall loss of our speaker model Ls is a summation of (Eqn. 3), (Eqn. 4) and (Eqn. 5) where λr

is a hyper-parameter on the weight of reward loss term

Ls = Ls1(θ) + Ls2(θ) + λrJ(θ) (6)

4 Experiments

4.1 Datasets

Our model is trained and evaluated on the three state-of-the-art referring expression datasets, RefCOCO,
RefCOCO+ and RefCOCOg. Each dataset use the image data from COCO (Lin et al., 2014), where
RefCOCO and RefCOCO+ are collected using ReferitGame (Kazemzadeh et al., 2014), and RefCOCOg
is collected with a non-interactive setting. Further details of each dataset are listed in following sections:

RefCOCO(UNC RefExp). (Yu et al., 2016) is composed of 19,994 images with 142,209 referring
expressions for 50,000 objects. The main characteristics of this dataset are that it contains a frequent
amount of people compared to objects. Therefore, for testing, we split person vs objects: images with
multiple people (Test A) and images with multiple objects (Test B).

RefCOCO+. (Yu et al., 2016) is composed of 19,992 images with 141,564 expressions for 49,856
objects. The main difference from the dataset RefCOCO is that the players were allowed to use location
words to describe the objects which focus on the appearance-based description, e.g. left corner hat,
top-right. Similar to RefCOCO, the splits are divided into tests for humans (Test A) and test for objects
(Test B).

RefCOCOg(Google RefExp). (Mao et al., 2016) is composed of 26,711 images with 85,474 referring
expressions for 54,822 objects. Compared to RefCOCO and RefCOCO+, the dataset contains longer
sentences with more details.
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RefCOCO RefCOCO+ RefCOCOg
Features Test A Test B Test A Test B Val

Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr
SLR (Yu et al., 2017) VGGNet 0.268 0.697 0.329 1.323 0.204 0.494 0.202 0.709 0.154 0.592
SLR+rerank VGGNet 0.296 0.717 0.340 1.320 0.213 0.520 0.215 0.735 0.159 0.662
re-SLR (Tanaka et al., 2019) VGGNet 0.279 0.729 0.334 1.315 0.201 0.491 0.211 0.757 0.146 0.679
re-SLR+rerank VGGNet 0.278 0.717 0.332 1.262 0.198 0.476 0.206 0.721 0.150 0.676
baseline: re-SLR ResNet 0.296 0.804 0.341 1.358 0.220 0.579 0.221 0.798 0.153 0.742
RefGTA-SR ResNet 0.307 0.865 0.343 1.381 0.242 0.671 0.220 0.812 0.164 0.738
RefGTA-SR+rerank ResNet 0.310 0.842 0.348 1.356 0.241 0.656 0.219 0.782 0.167 0.773
RefGTA-SLR ResNet 0.310 0.859 0.342 1.375 0.241 0.663 0.225 0.812 0.164 0.763
RefGTA-SLR+rerank ResNet 0.313 0.837 0.341 1.329 0.242 0.664 0.228 0.787 0.170 0.777
Our-SR ResNet 0.119 0.230 0.100 0.162 0.152 0.316 0.114 0.398 0.086 0.223
Our-SR+rerank ResNet 0.163 0.303 0.136 0.191 0.176 0.405 0.124 0.442 0.092 0.258
Our-SR+attn ResNet 0.201 0.253 0.210 0.253 0.240 0.453 0.210 0.451 0.094 0.210
Our-SR+attn+rerank ResNet 0.222 0.313 0.236 0.279 0.261 0.470 0.223 0.483 0.094 0.233
Our-SLR ResNet 0.322 0.905 0.342 1.393 0.260 0.722 0.235 0.853 0.177 0.896
Our-SLR+rerank ResNet 0.324 0.905 0.346 1.362 0.276 0.769 0.235 0.832 0.177 0.854
Our-SLR+attn ResNet 0.328 0.912 0.351 1.422 0.281 0.750 0.243 0.860 0.180 0.905
Our-SLR+attn+rerank ResNet 0.330 0.915 0.354 1.410 0.288 0.761 0.250 0.876 0.183 0.910

Table 1: Comparison of our results with state-of-the-art baseline methods on Referring Expression
Dataset of RefCOCO, RefCOCO+, RefCOCOg. ”+rerank” notes the reranking process for the gen-
erated expression according to the listener module. ”+attn” indicates the addition of scaled dot-product
attention with ranking strategy. SLR denotes the original SLR model, and the re-SLR is a reimplemented
version that uses ResNet as the image feature extractor from (Tanaka et al., 2019).

4.2 Implementation and Training Details

4.2.1 Implementation
We optimize the speaker module using the Adam (Kingma and Ba, 2014) optimizer with a batch size of
128 with initializing the learning rate to 4e-4. The learning rate is set to decay by 0.5 every 500 iterations.
The size of the hidden state and word embedding is set to 512. Also, we empirically found that taking 20
neighbors with 0.2 IoU in the NMS stage achieves optimal results. In the choice of ranking strategy, we
set m to 8 for obtaining the sparse attention weights. For reinforcement learning, our model generates 3
sampled sentences to estimate the rewards. During test phase, we use a beam search with a beam size of
10. We set λs1 = 1, λs2 = 0.1 and M1 = 1, M2 = 1 for the hyper-parameters of the margin loss. We set
the weight of the reward loss in the total loss function as λr = 1.

For the object representation, following (Anderson et al., 2018), we use object detection as bottom-up
attention, which provides salient image regions with clear boundaries. In particular, a Faster R-CNN
head (Ren et al., 2015) in conjunction with a ResNet-101 base network (He et al., 2016) is adopted as
our detection module. The detection head is first pre-trained on the Visual Genome dataset (Krishna
et al., 2017) and is capable of detecting 1, 600 objects categories and 400 attributes. To generate an
output set of object features in the image, we take the final detection outputs and perform non-maximum
suppression (NMS) for each object category using an IoU threshold of 0.7. Finally, a fixed number of 36
detected objects for each image are extracted as the image features (2, 048 dimensional vector for each
object)

4.2.2 Training Details
We trained our referring expression generator on three series of RefCOCO, RefCOCO+, RefCOCOg
datasets following with the LSTM loss, reward loss, and hinge loss. In particular, we first train the
reinforcer model by maximizing the reward for the consistency of image features and sentence features.
We then jointly train the speaker and listener model with reinforcer’s reward.

4.3 Comparison with State-Of-The-Arts Models

In this section, we perform both quantitative and qualitative experiments for SLR (Yu et al., 2017) and
RefGTA (Tanaka et al., 2019). For quantitative analysis, we evaluate our generated referring expressions
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RefCOCO RefCOCO+ RefCOCOg
Test A Test B Test A Test B Val

SLR (ensemble) (Yu et al., 2017) 80.08% 81.73% 65.40% 60.73% 74.19%
re-SLR(ensemble) (Tanaka et al., 2019) 78.43% 81.33% 64.57% 60.48% 70.95%
baseline:re-SLR (Listener) 81.14% 80.80% 68.16% 59.69% 72.36%
RefGTA SLR (Listener) (Tanaka et al., 2019) 79.05% 80.31% 65.75% 62.18% 73.39%
Our SLR (Listener) 82.67% 78.83% 75.80% 63.69% 78.35%
Our SLR+attn (Listener) 83.46% 80.08% 74.01% 64.37% 79.04%
RefGTA SR (Reinforcer) 80.44% 81.04% 67.81% 58.97% 74.94%
Our SR (Reinforcer) 82.17% 79.04% 74.88% 62.81% 78.41%
Our SR+attn (Reinforcer) 80.06% 78.79% 74.20% 60.36% 74.56%
baseline:re-SLR (Speaker) 80.70% 81.71% 68.91% 60.77% 72.55%
RefGTA SLR (Speaker) 83.05% 81.84% 72.37% 59.13% 74.79%
Our SLR (Speaker) 83.21% 78.55% 76.40% 63.75% 78.31%
Our SLR+attn (Speaker) 83.86% 80.45% 74.56% 65.52% 80.34%
RefGTA SR (Speaker) 82.45% 82.00% 72.07% 61.06% 70.35%
Our SR (Speaker) 67.98% 64.83% 61.04% 48.40% 63.85%
Our SR+attn (Speaker) 70.22% 67.04% 62.15% 53.08% 66.78%

Table 2: Comprehension evaluation on the RefCOCO, RefCOCO+ and RefCOCOg. Ensemble refers to
the use of both speaker and listener or reinforcer. Our three modules (speaker, listener, reinforcer) show
better performance in most cases compared to the previous state-of-the-art models. ”+attn” states that
the model is applied to the scaled dot-product attention with ranking strategy. SLR denotes the original
SLR model, and the re-SLR is a reimplemented version that uses ResNet as the image feature extractor
from (Tanaka et al., 2019).

on RefCOCO, RefCOCO+, RefCOCOg datasets. To evaluate the quality of the expressions, we also
adopt the METEOR and CIDEr automatic metrics commonly used in the field of image captioning. Our
work confirms the effectiveness of our listener module in the following sections.

4.3.1 Quantitative Results
Evaluation on referring expression generation. We compare our generated expression with the recent
models, including SLR (Yu et al., 2017), re-SLR (Tanaka et al., 2019) and RefGTA (Tanaka et al.,
2019). We observed that using the reranking mechanism with the listener module generally improves
the performance, although it was not quite helpful for the RefGTA model. For the well-generated
expressions, the listener module contributed the most to enhancing the power of the model. In particular,
the SR without the listener model performs much worse than using the listener as shown in the last
three or four rows in Table 1. Since the reranking technique have a higher effect on our listener model
compared to RefGTA, our model is able to outperform RefGTA on the comprehension evaluation
as shown in Table 2. We found that our neighboring-based attention function helps to improve the
performance of both speaker and listener module compared to the baseline of our model without
attention. We analyze the effect that our proposed attention function results in that our model selects the
meaningful neighboring objects to generate the referring expression as well as eliminating unnecessary
neighbor objects that helps the listener model to focus on the target object by using the discrimination
from surroundings.

Evaluation on referring expression comprehension. To find out the impact of each module for gen-
eration, we validate the performance of each speaker, listener, reinforcer module on comprehension
evaluation. We compare following two models (Yu et al., 2017; Tanaka et al., 2019) based on speaker-
listener-reinforcer for fair evaluation. We calculate the score of reinforcer, speaker by using ground truth
bounding boxes for all the objects given r, o∗ = argmaxiF (r, oi), o∗ = argmaxiP (r|oi).

We report the expression comprehension results in Table 2. The listener module plays a crucial role
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SLR:
• batter 
• man sitting behind fence 
• batter

RefGTA:
• batter 
• man sitting on fence
• batter

Ours:
• man behind fence 
• man sitting 
• batter

SLR:
• bluebag
• black bag 
• blue couch
• couch with white pillow
RefGTA:
• blue bag
• black bag
• blue couch
• blue couch
Ours:
• blue bag closest to us
• black bag in corner
• bed closest to us
• bed

SLR:
• laptop on left
• laptop in front 

RefGTA:
• left laptop
• laptop

Ours:
• black keyboard on left
• laptop closest to us

SLR:
• person on right
• man in middle
• left person

RefGTA:
• person on right
• man in middle
• person on left

Ours:
• skater in air
• guy in the middle
• left guy

Test A Test ATest B Test b

RefCOCO RefCOCO+

Figure 2: Qualitative comparisons for the generated referring expressions with (Yu et al., 2017), (Tanaka
et al., 2019) on the RefCOCO, RefCOCO+. The order of expressions corresponds to green, orange,
yellow red box, respectively.

in our model compared to others on improving the quality of expression. This is because our system
additionally considers the neighbor objects’ features for the target object. In particular, our speaker and
listener module show better performance on the evaluation using the attended visual difference features
compared to using simple visual difference features between target and neighbors. This is partly due to
the scaled dot-product attention along with ranking strategy which not only reduces the complexity of
the visual difference features to generate the referring expressions but also makes it easy to be referred
back from the listener module.

As a result, our proposed method which considers the target’s neighbors and performs the attention
mechanism between target and visual difference features can improve the performance of the speaker
and listener module by selecting the important context objects to identify the target surroundings itself.

4.3.2 Qualitative Results
In this section, we qualitatively analyze the tested data and results with comparison to SLR and RefGTA.
Fig. 2 and Fig. 3 shows the generated sentences for each referring expression dataset: RefCOCO,
RefCOCO+, and RefCOCOg. Particular objects are expressed with more detail as shown in Fig. 2
for RefCOCO dataset e.g. skater in air, black keyboard. Besides, some commonly mistaken objects are
correctly spoken with additional descriptive location information for RefCOCO+ dataset e.g. man behind
fence, bed closest to us. This indicates that our proposed method CoNAN has the potential to express the
target object with a good description such as the location, attributes, and additional information covering
the interaction with other objects. The consideration of the relationship with the target and neighbors
along with base ideas effectively simplifies the listener’s task of retrieving the object from the spoken
expression without ambiguity, e.g. blue couch, the person on right.

Since RefCOCOg is known to contain longer and more complex expressions, the expectation of the
performance boost with CoNAN is much more higher compared to other datasets. As the sentences were
allowed to be long and complex, it is very important to contain as many details as possible. Fig. 3
shows our excellent and superior results compared to SLR and RefGTA. CoNAN generates a detailed
expression for the baby along with the interaction information with other objects (e.g. holding a cell
phone) for the first image. Also, CoNAN correctly generates the expression for the ”arm behind” which
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GT:
• a black laptop with the 

screen open and a white 
paper on the keys

SLR:
• the laptop on the left
RefGTA:
• a black laptop with a black 

laptop on it
Ours:
• a black laptop that is being 

used by a man in a black 
shirt

GT:
• man in the left side with 

white color speaker
SLR:
• a man in a white shirt 

holding a wii controller
RefGTA:
• a man holding a video game 

controller
Ours:
• a man in a black shirt 

holding a wii controller

GT:
• a green and white small 

laptop 
SLR:
• the laptop on the right
RefGTA:
• a white laptop
Ours:
• the green laptop in the right-

hand picture

GT:
• a smiling child holding a 

device
• the arm on the back of the 

couch
SLR:
• the little girl in the right-

hand picture
• the back of a man’s head on 

the left
RefGTA:
• a baby
• a person in a white shirt
Ours:
• a boy holding a cell phone
• the arm of a person’s hand

RefCOCOg

Figure 3: Qualitative comparisons of the generated referring expressions with (Yu et al., 2017), (Tanaka
et al., 2019) and human annotation on RefCOCOg dataset. The order of expressions corresponds to
green, orange, yellow red box, respectively.

are falsely assumed as a head or a person in a white shirt. Similarly, for the second and third image,
CoNAN expresses the target object with far more details compared to other methods with having very
low difference compared to the ground truth.

Interestingly, sometimes CoNAN can give out explanations that are far more clear compared to the
ground truth as shown in the fourth image. While it is not clear to retrieve a black laptop with the screen
open, it is more intuitive and easy to retrieve a black laptop which is being used by a man in a black shirt.
This shows that taking the relationship with the neighbor object into account further helps the model to
semantically understand the complex scene. The base generator and reinforcer are expected to have huge
synergistic energy with additional object-level relation information, whereas, in the real world, humans
tend to understand a given object along with the relationship to its surroundings.

5 Conclusion

In this work, we present an approach to explicitly mining complementary aspects for the target object
in the local scene. In particular, the visual differences between the target and its neighbors are adopted.
Instead of using all of the neighbors, we employ an attentional ranking module to filter out irrelevant
neighbor objects. Finally, the speaker module is built upon the global features, target object features,
and our complementary neighbor features to generate the expression. Our quantitative results show that
CoNAN effectively enhances the performance for referring expression generation outperforming other
state-of-the-art methods by a clear margin. Besides, our qualitative results state that CoNAN has the
potential to give out the more descriptive expression for each target object sometimes even far superior
to the ground truth.
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